Spaces:
Runtime error
Runtime error
File size: 5,075 Bytes
4b37b7e e1b6e2f 4b37b7e 69e221d 4b37b7e 52eb47a 4b37b7e 52eb47a 4b37b7e 52eb47a 4b37b7e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 |
import torch
import librosa
import commons
import utils
from models import SynthesizerTrn
from text import text_to_sequence
import numpy as np
from mel_processing import spectrogram_torch
import gradio as gr
from indic_transliteration import sanscript
SCRIPT_DICT={
'Devanagari':sanscript.DEVANAGARI,
'IAST':sanscript.IAST,
'SLP1':sanscript.SLP1,
'HK':sanscript.HK
}
DEFAULT_TEXT='संस्कृतम् जगतः एकतमा अतिप्राचीना समृद्धा शास्त्रीया च भाषासु वर्तते । संस्कृतं भारतस्य जगत: वा भाषासु एकतमा प्राचीनतमा ।'
def get_text(text, hps, cleaned=False):
if cleaned:
text_norm = text_to_sequence(text, hps.symbols, [])
else:
text_norm = text_to_sequence(text, hps.symbols, hps.data.text_cleaners)
if hps.data.add_blank:
text_norm = commons.intersperse(text_norm, 0)
text_norm = torch.LongTensor(text_norm)
return text_norm
def default_text(script):
if script=='Devanagari':
return DEFAULT_TEXT
else:
return sanscript.transliterate(DEFAULT_TEXT,sanscript.DEVANAGARI,SCRIPT_DICT[script])
def speech_synthesize(text,script, speaker_id, length_scale):
text=text.replace('\n','')
if script!='Devanagari':
text=sanscript.transliterate(text,SCRIPT_DICT[script],sanscript.DEVANAGARI)
print(text)
stn_tst = get_text(text, hps_ms)
with torch.no_grad():
x_tst = stn_tst.unsqueeze(0)
x_tst_lengths = torch.LongTensor([stn_tst.size(0)])
sid = torch.LongTensor([speaker_id])
audio = net_g_ms.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=0.667, noise_scale_w=0.8, length_scale=length_scale)[0][0,0].data.cpu().float().numpy()
return (hps_ms.data.sampling_rate, audio)
def voice_convert(audio,origin_id,target_id):
sampling_rate, audio = audio
audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
if len(audio.shape) > 1:
audio = librosa.to_mono(audio.transpose(1, 0))
if sampling_rate != hps_ms.data.sampling_rate:
audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=hps_ms.data.sampling_rate)
with torch.no_grad():
y = torch.FloatTensor(audio).unsqueeze(0)
spec = spectrogram_torch(y, hps_ms.data.filter_length,
hps_ms.data.sampling_rate, hps_ms.data.hop_length, hps_ms.data.win_length,
center=False)
spec_lengths = torch.LongTensor([spec.size(-1)])
sid_src = torch.LongTensor([origin_id])
sid_tgt = torch.LongTensor([target_id])
audio = net_g_ms.voice_conversion(spec, spec_lengths, sid_src=sid_src, sid_tgt=sid_tgt)[0][0,0].data.cpu().float().numpy()
return (hps_ms.data.sampling_rate, audio)
if __name__=='__main__':
hps_ms = utils.get_hparams_from_file('model/config.json')
n_speakers = hps_ms.data.n_speakers
n_symbols = len(hps_ms.symbols)
speakers = hps_ms.speakers
net_g_ms = SynthesizerTrn(
n_symbols,
hps_ms.data.filter_length // 2 + 1,
hps_ms.train.segment_size // hps_ms.data.hop_length,
n_speakers=n_speakers,
**hps_ms.model)
_ = net_g_ms.eval()
utils.load_checkpoint('model/model.pth', net_g_ms)
with gr.Blocks() as app:
gr.Markdown('# Sanskrit Text to Speech\n'
'![visitor badge](https://visitor-badge.glitch.me/badge?page_id=cjangcjengh.sanskrit-tts)')
with gr.Tab('Text to Speech'):
text_script=gr.Radio(['Devanagari','IAST','SLP1','HK'],label='Script',interactive=True,value='Devanagari')
text_input = gr.TextArea(label='Text', placeholder='Type your text here',value=DEFAULT_TEXT)
speaker_id=gr.Dropdown(speakers,label='Speaker',type='index',interactive=True,value=speakers[0])
length_scale=gr.Slider(0.5,2,1,step=0.1,label='Speaking Speed',interactive=True)
tts_button = gr.Button('Synthesize')
audio_output = gr.Audio(label='Speech Synthesized')
text_script.change(default_text,[text_script],[text_input])
tts_button.click(speech_synthesize,[text_input,text_script,speaker_id,length_scale],[audio_output])
with gr.Tab('Voice Conversion'):
audio_input = gr.Audio(label='Audio',interactive=True)
speaker_input = gr.Dropdown(speakers, label='Original Speaker',type='index',interactive=True, value=speakers[0])
speaker_output = gr.Dropdown(speakers, label='Target Speaker',type='index',interactive=True, value=speakers[0])
vc_button = gr.Button('Convert')
audio_output_vc = gr.Audio(label='Voice Converted')
vc_button.click(voice_convert,[audio_input,speaker_input,speaker_output],[audio_output_vc])
gr.Markdown('## Based on\n'
'- [VITS](https://github.com/jaywalnut310/vits)\n\n'
'## Dataset\n'
'- [Vāksañcayaḥ](https://www.cse.iitb.ac.in/~asr/)')
app.launch() |