File size: 7,514 Bytes
adbb9b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import os

import PIL.Image
import numpy as np
import torch
import torchvision
from torchvision.transforms import Resize, InterpolationMode
import imageio
from einops import rearrange
import cv2
from PIL import Image
from annotator.util import resize_image, HWC3
from annotator.canny import CannyDetector
from annotator.openpose import OpenposeDetector
import decord
# decord.bridge.set_bridge('torch')

apply_canny = CannyDetector()
apply_openpose = OpenposeDetector()


def add_watermark(image, watermark_path, wm_rel_size=1/16, boundary=5):
    '''
    Creates a watermark on the saved inference image.
    We request that you do not remove this to properly assign credit to
    Shi-Lab's work.
    '''
    watermark = Image.open(watermark_path)
    w_0, h_0 = watermark.size
    H, W, _ = image.shape
    wmsize = int(max(H, W) * wm_rel_size)
    aspect = h_0 / w_0
    if aspect > 1.0:
        watermark = watermark.resize((wmsize, int(aspect * wmsize)), Image.LANCZOS)
    else:
        watermark = watermark.resize((int(wmsize / aspect), wmsize), Image.LANCZOS)
    w, h = watermark.size
    loc_h = H - h - boundary
    loc_w = W - w - boundary
    image = Image.fromarray(image)
    mask = watermark if watermark.mode in ('RGBA', 'LA') else None
    image.paste(watermark, (loc_w, loc_h), mask)
    return image


def pre_process_canny(input_video, low_threshold=100, high_threshold=200):
    detected_maps = []
    for frame in input_video:
        img = rearrange(frame, 'c h w -> h w c').cpu().numpy().astype(np.uint8)
        detected_map = apply_canny(img, low_threshold, high_threshold)
        detected_map = HWC3(detected_map)
        detected_maps.append(detected_map[None])
    detected_maps = np.concatenate(detected_maps)
    control = torch.from_numpy(detected_maps.copy()).float() / 255.0
    return rearrange(control, 'f h w c -> f c h w')


def pre_process_pose(input_video, apply_pose_detect: bool = True):
    detected_maps = []
    for frame in input_video:
        img = rearrange(frame, 'c h w -> h w c').cpu().numpy().astype(np.uint8)
        img = HWC3(img)
        if apply_pose_detect:
            detected_map, _ = apply_openpose(img)
        else:
            detected_map = img
        detected_map = HWC3(detected_map)
        H, W, C = img.shape
        detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_NEAREST)
        detected_maps.append(detected_map[None])
    detected_maps = np.concatenate(detected_maps)
    control = torch.from_numpy(detected_maps.copy()).float() / 255.0
    return rearrange(control, 'f h w c -> f c h w')


def create_video(frames, fps, rescale=False, path=None, watermark=None):
    if path is None:
        dir = "temporal"
        os.makedirs(dir, exist_ok=True)
        path = os.path.join(dir, 'movie.mp4')

    outputs = []
    for i, x in enumerate(frames):
        x = torchvision.utils.make_grid(torch.Tensor(x), nrow=4)
        if rescale:
            x = (x + 1.0) / 2.0  # -1,1 -> 0,1
        x = (x * 255).numpy().astype(np.uint8)

        if watermark is not None:
            x = add_watermark(x, watermark)
        outputs.append(x)
        # imageio.imsave(os.path.join(dir, os.path.splitext(name)[0] + f'_{i}.jpg'), x)

    imageio.mimsave(path, outputs, fps=fps)
    return path

def create_gif(frames, fps, rescale=False, path=None, watermark=None):
    if path is None:
        dir = "temporal"
        os.makedirs(dir, exist_ok=True)
        path = os.path.join(dir, 'canny_db.gif')

    outputs = []
    for i, x in enumerate(frames):
        x = torchvision.utils.make_grid(torch.Tensor(x), nrow=4)
        if rescale:
            x = (x + 1.0) / 2.0  # -1,1 -> 0,1
        x = (x * 255).numpy().astype(np.uint8)
        if watermark is not None:
            x = add_watermark(x, watermark)
        outputs.append(x)
        # imageio.imsave(os.path.join(dir, os.path.splitext(name)[0] + f'_{i}.jpg'), x)

    imageio.mimsave(path, outputs, fps=fps)
    return path

def prepare_video(video_path:str, resolution:int, device, dtype, normalize=True, start_t:float=0, end_t:float=-1, output_fps:int=-1):
    vr = decord.VideoReader(video_path)
    initial_fps = vr.get_avg_fps()
    if output_fps == -1:
        output_fps = int(initial_fps)
    if end_t == -1:
        end_t = len(vr) / initial_fps
    else:
        end_t = min(len(vr) / initial_fps, end_t)
    assert 0 <= start_t < end_t
    assert output_fps > 0
    start_f_ind = int(start_t * initial_fps)
    end_f_ind = int(end_t * initial_fps)
    num_f = int((end_t - start_t) * output_fps)
    sample_idx = np.linspace(start_f_ind, end_f_ind, num_f, endpoint=False).astype(int)
    video = vr.get_batch(sample_idx)
    if torch.is_tensor(video):
        video = video.detach().cpu().numpy()
    else:
        video = video.asnumpy()
    _, h, w, _ = video.shape
    video = rearrange(video, "f h w c -> f c h w")
    video = torch.Tensor(video).to(device).to(dtype)
    if h > w:
        w = int(w * resolution / h)
        w = w - w % 8
        h = resolution - resolution % 8
    else:
        h = int(h * resolution / w)
        h = h - h % 8
        w = resolution - resolution % 8
    video = Resize((h, w), interpolation=InterpolationMode.BILINEAR, antialias=True)(video)
    if normalize:
        video = video / 127.5 - 1.0
    return video, output_fps


def post_process_gif(list_of_results, image_resolution):
    output_file = "/tmp/ddxk.gif"
    imageio.mimsave(output_file, list_of_results, fps=4)
    return output_file


class CrossFrameAttnProcessor:
    def __init__(self, unet_chunk_size=2):
        self.unet_chunk_size = unet_chunk_size

    def __call__(
            self,
            attn,
            hidden_states,
            encoder_hidden_states=None,
            attention_mask=None):
        batch_size, sequence_length, _ = hidden_states.shape
        attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
        query = attn.to_q(hidden_states)

        is_cross_attention = encoder_hidden_states is not None
        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
        elif attn.cross_attention_norm:
            encoder_hidden_states = attn.norm_cross(encoder_hidden_states)
        key = attn.to_k(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states)
        # Sparse Attention
        if not is_cross_attention:
            video_length = key.size()[0] // self.unet_chunk_size
            # former_frame_index = torch.arange(video_length) - 1
            # former_frame_index[0] = 0
            former_frame_index = [0] * video_length
            key = rearrange(key, "(b f) d c -> b f d c", f=video_length)
            key = key[:, former_frame_index]
            key = rearrange(key, "b f d c -> (b f) d c")
            value = rearrange(value, "(b f) d c -> b f d c", f=video_length)
            value = value[:, former_frame_index]
            value = rearrange(value, "b f d c -> (b f) d c")

        query = attn.head_to_batch_dim(query)
        key = attn.head_to_batch_dim(key)
        value = attn.head_to_batch_dim(value)

        attention_probs = attn.get_attention_scores(query, key, attention_mask)
        hidden_states = torch.bmm(attention_probs, value)
        hidden_states = attn.batch_to_head_dim(hidden_states)

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        return hidden_states