|
import gradio as gr |
|
import random |
|
import numpy as np |
|
import os |
|
import requests |
|
import torch |
|
import torchvision.transforms as T |
|
from PIL import Image |
|
from transformers import AutoProcessor, AutoModelForVision2Seq |
|
import cv2 |
|
import ast |
|
|
|
colors = [ |
|
(0, 255, 0), |
|
(0, 0, 255), |
|
(255, 255, 0), |
|
(255, 0, 255), |
|
(0, 255, 255), |
|
(114, 128, 250), |
|
(0, 165, 255), |
|
(0, 128, 0), |
|
(144, 238, 144), |
|
(238, 238, 175), |
|
(255, 191, 0), |
|
(0, 128, 0), |
|
(226, 43, 138), |
|
(255, 0, 255), |
|
(0, 215, 255), |
|
(255, 0, 0), |
|
] |
|
|
|
color_map = { |
|
f"{color_id}": f"#{hex(color[2])[2:].zfill(2)}{hex(color[1])[2:].zfill(2)}{hex(color[0])[2:].zfill(2)}" for color_id, color in enumerate(colors) |
|
} |
|
|
|
|
|
def is_overlapping(rect1, rect2): |
|
x1, y1, x2, y2 = rect1 |
|
x3, y3, x4, y4 = rect2 |
|
return not (x2 < x3 or x1 > x4 or y2 < y3 or y1 > y4) |
|
|
|
|
|
def draw_entity_boxes_on_image(image, entities, show=False, save_path=None, entity_index=-1): |
|
"""_summary_ |
|
Args: |
|
image (_type_): image or image path |
|
collect_entity_location (_type_): _description_ |
|
""" |
|
if isinstance(image, Image.Image): |
|
image_h = image.height |
|
image_w = image.width |
|
image = np.array(image)[:, :, [2, 1, 0]] |
|
elif isinstance(image, str): |
|
if os.path.exists(image): |
|
pil_img = Image.open(image).convert("RGB") |
|
image = np.array(pil_img)[:, :, [2, 1, 0]] |
|
image_h = pil_img.height |
|
image_w = pil_img.width |
|
else: |
|
raise ValueError(f"invaild image path, {image}") |
|
elif isinstance(image, torch.Tensor): |
|
|
|
image_tensor = image.cpu() |
|
reverse_norm_mean = torch.tensor([0.48145466, 0.4578275, 0.40821073])[:, None, None] |
|
reverse_norm_std = torch.tensor([0.26862954, 0.26130258, 0.27577711])[:, None, None] |
|
image_tensor = image_tensor * reverse_norm_std + reverse_norm_mean |
|
pil_img = T.ToPILImage()(image_tensor) |
|
image_h = pil_img.height |
|
image_w = pil_img.width |
|
image = np.array(pil_img)[:, :, [2, 1, 0]] |
|
else: |
|
raise ValueError(f"invaild image format, {type(image)} for {image}") |
|
|
|
if len(entities) == 0: |
|
return image |
|
|
|
indices = list(range(len(entities))) |
|
if entity_index >= 0: |
|
indices = [entity_index] |
|
|
|
|
|
entities = entities[:len(color_map)] |
|
|
|
new_image = image.copy() |
|
previous_bboxes = [] |
|
|
|
text_size = 1 |
|
|
|
text_line = 1 |
|
box_line = 3 |
|
(c_width, text_height), _ = cv2.getTextSize("F", cv2.FONT_HERSHEY_COMPLEX, text_size, text_line) |
|
base_height = int(text_height * 0.675) |
|
text_offset_original = text_height - base_height |
|
text_spaces = 3 |
|
|
|
|
|
used_colors = colors |
|
|
|
color_id = -1 |
|
for entity_idx, (entity_name, (start, end), bboxes) in enumerate(entities): |
|
color_id += 1 |
|
if entity_idx not in indices: |
|
continue |
|
for bbox_id, (x1_norm, y1_norm, x2_norm, y2_norm) in enumerate(bboxes): |
|
|
|
|
|
orig_x1, orig_y1, orig_x2, orig_y2 = int(x1_norm * image_w), int(y1_norm * image_h), int(x2_norm * image_w), int(y2_norm * image_h) |
|
|
|
|
|
|
|
color = used_colors[color_id] |
|
new_image = cv2.rectangle(new_image, (orig_x1, orig_y1), (orig_x2, orig_y2), color, box_line) |
|
|
|
l_o, r_o = box_line // 2 + box_line % 2, box_line // 2 + box_line % 2 + 1 |
|
|
|
x1 = orig_x1 - l_o |
|
y1 = orig_y1 - l_o |
|
|
|
if y1 < text_height + text_offset_original + 2 * text_spaces: |
|
y1 = orig_y1 + r_o + text_height + text_offset_original + 2 * text_spaces |
|
x1 = orig_x1 + r_o |
|
|
|
|
|
(text_width, text_height), _ = cv2.getTextSize(f" {entity_name}", cv2.FONT_HERSHEY_COMPLEX, text_size, text_line) |
|
text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2 = x1, y1 - (text_height + text_offset_original + 2 * text_spaces), x1 + text_width, y1 |
|
|
|
for prev_bbox in previous_bboxes: |
|
while is_overlapping((text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2), prev_bbox): |
|
text_bg_y1 += (text_height + text_offset_original + 2 * text_spaces) |
|
text_bg_y2 += (text_height + text_offset_original + 2 * text_spaces) |
|
y1 += (text_height + text_offset_original + 2 * text_spaces) |
|
|
|
if text_bg_y2 >= image_h: |
|
text_bg_y1 = max(0, image_h - (text_height + text_offset_original + 2 * text_spaces)) |
|
text_bg_y2 = image_h |
|
y1 = image_h |
|
break |
|
|
|
alpha = 0.5 |
|
for i in range(text_bg_y1, text_bg_y2): |
|
for j in range(text_bg_x1, text_bg_x2): |
|
if i < image_h and j < image_w: |
|
if j < text_bg_x1 + 1.35 * c_width: |
|
|
|
bg_color = color |
|
else: |
|
|
|
bg_color = [255, 255, 255] |
|
new_image[i, j] = (alpha * new_image[i, j] + (1 - alpha) * np.array(bg_color)).astype(np.uint8) |
|
|
|
cv2.putText( |
|
new_image, f" {entity_name}", (x1, y1 - text_offset_original - 1 * text_spaces), cv2.FONT_HERSHEY_COMPLEX, text_size, (0, 0, 0), text_line, cv2.LINE_AA |
|
) |
|
|
|
previous_bboxes.append((text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2)) |
|
|
|
pil_image = Image.fromarray(new_image[:, :, [2, 1, 0]]) |
|
if save_path: |
|
pil_image.save(save_path) |
|
if show: |
|
pil_image.show() |
|
|
|
return pil_image |
|
|
|
|
|
def main(): |
|
|
|
ckpt = "microsoft/kosmos-2-patch14-224" |
|
|
|
model = AutoModelForVision2Seq.from_pretrained(ckpt).to("cuda") |
|
processor = AutoProcessor.from_pretrained(ckpt) |
|
|
|
def generate_predictions(image_input, text_input): |
|
|
|
user_image_path = "/tmp/user_input_test_image.jpg" |
|
image_input.save(user_image_path) |
|
image_input = Image.open(user_image_path) |
|
|
|
if text_input == "Brief": |
|
text_input = "<grounding>An image of" |
|
elif text_input == "Detailed": |
|
text_input = "<grounding>Describe this image in detail:" |
|
else: |
|
text_input = f"<grounding>{text_input}" |
|
|
|
inputs = processor(text=text_input, images=image_input, return_tensors="pt").to("cuda") |
|
|
|
generated_ids = model.generate( |
|
pixel_values=inputs["pixel_values"], |
|
input_ids=inputs["input_ids"], |
|
attention_mask=inputs["attention_mask"], |
|
image_embeds=None, |
|
image_embeds_position_mask=inputs["image_embeds_position_mask"], |
|
use_cache=True, |
|
max_new_tokens=256, |
|
) |
|
|
|
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] |
|
|
|
|
|
processed_text, entities = processor.post_process_generation(generated_text) |
|
|
|
annotated_image = draw_entity_boxes_on_image(image_input, entities, show=False) |
|
|
|
color_id = -1 |
|
entity_info = [] |
|
filtered_entities = [] |
|
for entity in entities: |
|
entity_name, (start, end), bboxes = entity |
|
if start == end: |
|
|
|
continue |
|
color_id += 1 |
|
entity_info.append(((start, end), color_id)) |
|
filtered_entities.append(entity) |
|
|
|
colored_text = [] |
|
prev_start = 0 |
|
end = 0 |
|
for idx, ((start, end), color_id) in enumerate(entity_info): |
|
if start > prev_start: |
|
colored_text.append((processed_text[prev_start:start], None)) |
|
colored_text.append((processed_text[start:end], f"{color_id}")) |
|
prev_start = end |
|
|
|
if end < len(processed_text): |
|
colored_text.append((processed_text[end:len(processed_text)], None)) |
|
|
|
return annotated_image, colored_text, str(filtered_entities) |
|
|
|
with gr.Blocks(title="MAGIC Image Captioning", theme='sudeepshouche/minimalist').queue() as demo: |
|
gr.Markdown((""" |
|
# Image description with Entity Recognition |
|
""")) |
|
with gr.Row(): |
|
with gr.Column(): |
|
image_input = gr.Image(type="pil", label="Test Image") |
|
text_input = gr.Radio(["Brief", "Detailed"], label="Description Type", value="Brief") |
|
|
|
run_button = gr.Button(label="Run", visible=True) |
|
|
|
with gr.Column(): |
|
image_output = gr.Image(type="pil") |
|
text_output1 = gr.HighlightedText( |
|
label="Generated Description", |
|
combine_adjacent=False, |
|
show_legend=True, |
|
).style(color_map=color_map) |
|
|
|
|
|
selected = gr.Number(-1, show_label=False, placeholder="Selected", visible=False) |
|
|
|
|
|
entity_output = gr.Textbox(visible=False) |
|
|
|
|
|
def get_text_span_label(evt: gr.SelectData): |
|
if evt.value[-1] is None: |
|
return -1 |
|
return int(evt.value[-1]) |
|
|
|
text_output1.select(get_text_span_label, None, selected) |
|
|
|
|
|
def update_output_image(img_input, image_output, entities, idx): |
|
entities = ast.literal_eval(entities) |
|
updated_image = draw_entity_boxes_on_image(img_input, entities, entity_index=idx) |
|
return updated_image |
|
selected.change(update_output_image, [image_input, image_output, entity_output, selected], [image_output]) |
|
|
|
run_button.click(fn=generate_predictions, |
|
inputs=[image_input, text_input], |
|
outputs=[image_output, text_output1, entity_output], |
|
show_progress=True, queue=True) |
|
|
|
demo.launch(share=False) |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |