ydshieh HF staff commited on
Commit
5ade3f9
·
1 Parent(s): 1ab4225

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +314 -0
app.py CHANGED
@@ -0,0 +1,314 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import random
3
+ import numpy as np
4
+ import os
5
+ import requests
6
+ import torch
7
+ import torchvision.transforms as T
8
+ from PIL import Image
9
+ from transformers import AutoProcessor, AutoModelForVision2Seq
10
+ import cv2
11
+ import ast
12
+
13
+ colors = [
14
+ (0, 255, 0),
15
+ (0, 0, 255),
16
+ (255, 255, 0),
17
+ (255, 0, 255),
18
+ (0, 255, 255),
19
+ (114, 128, 250),
20
+ (0, 165, 255),
21
+ (0, 128, 0),
22
+ (144, 238, 144),
23
+ (238, 238, 175),
24
+ (255, 191, 0),
25
+ (0, 128, 0),
26
+ (226, 43, 138),
27
+ (255, 0, 255),
28
+ (0, 215, 255),
29
+ (255, 0, 0),
30
+ ]
31
+
32
+ color_map = {
33
+ f"{color_id}": f"#{hex(color[2])[2:].zfill(2)}{hex(color[1])[2:].zfill(2)}{hex(color[0])[2:].zfill(2)}" for color_id, color in enumerate(colors)
34
+ }
35
+
36
+
37
+ def is_overlapping(rect1, rect2):
38
+ x1, y1, x2, y2 = rect1
39
+ x3, y3, x4, y4 = rect2
40
+ return not (x2 < x3 or x1 > x4 or y2 < y3 or y1 > y4)
41
+
42
+
43
+ def draw_entity_boxes_on_image(image, entities, show=False, save_path=None, entity_index=-1):
44
+ """_summary_
45
+ Args:
46
+ image (_type_): image or image path
47
+ collect_entity_location (_type_): _description_
48
+ """
49
+ if isinstance(image, Image.Image):
50
+ image_h = image.height
51
+ image_w = image.width
52
+ image = np.array(image)[:, :, [2, 1, 0]]
53
+ elif isinstance(image, str):
54
+ if os.path.exists(image):
55
+ pil_img = Image.open(image).convert("RGB")
56
+ image = np.array(pil_img)[:, :, [2, 1, 0]]
57
+ image_h = pil_img.height
58
+ image_w = pil_img.width
59
+ else:
60
+ raise ValueError(f"invaild image path, {image}")
61
+ elif isinstance(image, torch.Tensor):
62
+ # pdb.set_trace()
63
+ image_tensor = image.cpu()
64
+ reverse_norm_mean = torch.tensor([0.48145466, 0.4578275, 0.40821073])[:, None, None]
65
+ reverse_norm_std = torch.tensor([0.26862954, 0.26130258, 0.27577711])[:, None, None]
66
+ image_tensor = image_tensor * reverse_norm_std + reverse_norm_mean
67
+ pil_img = T.ToPILImage()(image_tensor)
68
+ image_h = pil_img.height
69
+ image_w = pil_img.width
70
+ image = np.array(pil_img)[:, :, [2, 1, 0]]
71
+ else:
72
+ raise ValueError(f"invaild image format, {type(image)} for {image}")
73
+
74
+ if len(entities) == 0:
75
+ return image
76
+
77
+ indices = list(range(len(entities)))
78
+ if entity_index >= 0:
79
+ indices = [entity_index]
80
+
81
+ # Not to show too many bboxes
82
+ entities = entities[:len(color_map)]
83
+
84
+ new_image = image.copy()
85
+ previous_bboxes = []
86
+ # size of text
87
+ text_size = 1
88
+ # thickness of text
89
+ text_line = 1 # int(max(1 * min(image_h, image_w) / 512, 1))
90
+ box_line = 3
91
+ (c_width, text_height), _ = cv2.getTextSize("F", cv2.FONT_HERSHEY_COMPLEX, text_size, text_line)
92
+ base_height = int(text_height * 0.675)
93
+ text_offset_original = text_height - base_height
94
+ text_spaces = 3
95
+
96
+ # num_bboxes = sum(len(x[-1]) for x in entities)
97
+ used_colors = colors # random.sample(colors, k=num_bboxes)
98
+
99
+ color_id = -1
100
+ for entity_idx, (entity_name, (start, end), bboxes) in enumerate(entities):
101
+ color_id += 1
102
+ if entity_idx not in indices:
103
+ continue
104
+ for bbox_id, (x1_norm, y1_norm, x2_norm, y2_norm) in enumerate(bboxes):
105
+ # if start is None and bbox_id > 0:
106
+ # color_id += 1
107
+ orig_x1, orig_y1, orig_x2, orig_y2 = int(x1_norm * image_w), int(y1_norm * image_h), int(x2_norm * image_w), int(y2_norm * image_h)
108
+
109
+ # draw bbox
110
+ # random color
111
+ color = used_colors[color_id] # tuple(np.random.randint(0, 255, size=3).tolist())
112
+ new_image = cv2.rectangle(new_image, (orig_x1, orig_y1), (orig_x2, orig_y2), color, box_line)
113
+
114
+ l_o, r_o = box_line // 2 + box_line % 2, box_line // 2 + box_line % 2 + 1
115
+
116
+ x1 = orig_x1 - l_o
117
+ y1 = orig_y1 - l_o
118
+
119
+ if y1 < text_height + text_offset_original + 2 * text_spaces:
120
+ y1 = orig_y1 + r_o + text_height + text_offset_original + 2 * text_spaces
121
+ x1 = orig_x1 + r_o
122
+
123
+ # add text background
124
+ (text_width, text_height), _ = cv2.getTextSize(f" {entity_name}", cv2.FONT_HERSHEY_COMPLEX, text_size, text_line)
125
+ text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2 = x1, y1 - (text_height + text_offset_original + 2 * text_spaces), x1 + text_width, y1
126
+
127
+ for prev_bbox in previous_bboxes:
128
+ while is_overlapping((text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2), prev_bbox):
129
+ text_bg_y1 += (text_height + text_offset_original + 2 * text_spaces)
130
+ text_bg_y2 += (text_height + text_offset_original + 2 * text_spaces)
131
+ y1 += (text_height + text_offset_original + 2 * text_spaces)
132
+
133
+ if text_bg_y2 >= image_h:
134
+ text_bg_y1 = max(0, image_h - (text_height + text_offset_original + 2 * text_spaces))
135
+ text_bg_y2 = image_h
136
+ y1 = image_h
137
+ break
138
+
139
+ alpha = 0.5
140
+ for i in range(text_bg_y1, text_bg_y2):
141
+ for j in range(text_bg_x1, text_bg_x2):
142
+ if i < image_h and j < image_w:
143
+ if j < text_bg_x1 + 1.35 * c_width:
144
+ # original color
145
+ bg_color = color
146
+ else:
147
+ # white
148
+ bg_color = [255, 255, 255]
149
+ new_image[i, j] = (alpha * new_image[i, j] + (1 - alpha) * np.array(bg_color)).astype(np.uint8)
150
+
151
+ cv2.putText(
152
+ new_image, f" {entity_name}", (x1, y1 - text_offset_original - 1 * text_spaces), cv2.FONT_HERSHEY_COMPLEX, text_size, (0, 0, 0), text_line, cv2.LINE_AA
153
+ )
154
+ # previous_locations.append((x1, y1))
155
+ previous_bboxes.append((text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2))
156
+
157
+ pil_image = Image.fromarray(new_image[:, :, [2, 1, 0]])
158
+ if save_path:
159
+ pil_image.save(save_path)
160
+ if show:
161
+ pil_image.show()
162
+
163
+ return pil_image
164
+
165
+
166
+ def main():
167
+
168
+ ckpt = "microsoft/kosmos-2-patch14-224"
169
+
170
+ model = AutoModelForVision2Seq.from_pretrained(ckpt).to("cuda")
171
+ processor = AutoProcessor.from_pretrained(ckpt)
172
+
173
+ def generate_predictions(image_input, text_input):
174
+
175
+ # Save the image and load it again to match the original Kosmos-2 demo.
176
+ # (https://github.com/microsoft/unilm/blob/f4695ed0244a275201fff00bee495f76670fbe70/kosmos-2/demo/gradio_app.py#L345-L346)
177
+ user_image_path = "/tmp/user_input_test_image.jpg"
178
+ image_input.save(user_image_path)
179
+ # This might give different results from the original argument `image_input`
180
+ image_input = Image.open(user_image_path)
181
+
182
+ if text_input == "Brief":
183
+ text_input = "<grounding>An image of"
184
+ elif text_input == "Detailed":
185
+ text_input = "<grounding>Describe this image in detail:"
186
+ else:
187
+ text_input = f"<grounding>{text_input}"
188
+
189
+ inputs = processor(text=text_input, images=image_input, return_tensors="pt")
190
+
191
+ generated_ids = model.generate(
192
+ pixel_values=inputs["pixel_values"],
193
+ input_ids=inputs["input_ids"],
194
+ attention_mask=inputs["attention_mask"],
195
+ image_embeds=None,
196
+ image_embeds_position_mask=inputs["image_embeds_position_mask"],
197
+ use_cache=True,
198
+ max_new_tokens=128,
199
+ )
200
+
201
+ generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
202
+
203
+ # By default, the generated text is cleanup and the entities are extracted.
204
+ processed_text, entities = processor.post_process_generation(generated_text)
205
+
206
+ annotated_image = draw_entity_boxes_on_image(image_input, entities, show=False)
207
+
208
+ color_id = -1
209
+ entity_info = []
210
+ filtered_entities = []
211
+ for entity in entities:
212
+ entity_name, (start, end), bboxes = entity
213
+ if start == end:
214
+ # skip bounding bbox without a `phrase` associated
215
+ continue
216
+ color_id += 1
217
+ # for bbox_id, _ in enumerate(bboxes):
218
+ # if start is None and bbox_id > 0:
219
+ # color_id += 1
220
+ entity_info.append(((start, end), color_id))
221
+ filtered_entities.append(entity)
222
+
223
+ colored_text = []
224
+ prev_start = 0
225
+ end = 0
226
+ for idx, ((start, end), color_id) in enumerate(entity_info):
227
+ if start > prev_start:
228
+ colored_text.append((processed_text[prev_start:start], None))
229
+ colored_text.append((processed_text[start:end], f"{color_id}"))
230
+ prev_start = end
231
+
232
+ if end < len(processed_text):
233
+ colored_text.append((processed_text[end:len(processed_text)], None))
234
+
235
+ return annotated_image, colored_text, str(filtered_entities)
236
+
237
+ term_of_use = """
238
+ ### Terms of use
239
+ By using this model, users are required to agree to the following terms:
240
+ The model is intended for academic and research purposes.
241
+ The utilization of the model to create unsuitable material is strictly forbidden and not endorsed by this work.
242
+ The accountability for any improper or unacceptable application of the model rests exclusively with the individuals who generated such content.
243
+
244
+ ### License
245
+ This project is licensed under the [Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct).
246
+ """
247
+
248
+ with gr.Blocks(title="Kosmos-2", theme=gr.themes.Base()).queue() as demo:
249
+ gr.Markdown(("""
250
+ # Kosmos-2: Grounding Multimodal Large Language Models to the World
251
+ [[Paper]](https://arxiv.org/abs/2306.14824) [[Code]](https://github.com/microsoft/unilm/blob/master/kosmos-2)
252
+ """))
253
+ with gr.Row():
254
+ with gr.Column():
255
+ image_input = gr.Image(type="pil", label="Test Image")
256
+ text_input = gr.Radio(["Brief", "Detailed"], label="Description Type", value="Brief")
257
+
258
+ run_button = gr.Button(label="Run", visible=True)
259
+
260
+ with gr.Column():
261
+ image_output = gr.Image(type="pil")
262
+ text_output1 = gr.HighlightedText(
263
+ label="Generated Description",
264
+ combine_adjacent=False,
265
+ show_legend=True,
266
+ ).style(color_map=color_map)
267
+
268
+ with gr.Row():
269
+ with gr.Column():
270
+ gr.Examples(examples=[
271
+ ["images/two_dogs.jpg", "Detailed"],
272
+ ["images/snowman.png", "Brief"],
273
+ ["images/man_ball.png", "Detailed"],
274
+ ], inputs=[image_input, text_input])
275
+ with gr.Column():
276
+ gr.Examples(examples=[
277
+ ["images/six_planes.png", "Brief"],
278
+ ["images/quadrocopter.jpg", "Brief"],
279
+ ["images/carnaby_street.jpg", "Brief"],
280
+ ], inputs=[image_input, text_input])
281
+ gr.Markdown(term_of_use)
282
+
283
+ # record which text span (label) is selected
284
+ selected = gr.Number(-1, show_label=False, placeholder="Selected", visible=False)
285
+
286
+ # record the current `entities`
287
+ entity_output = gr.Textbox(visible=False)
288
+
289
+ # get the current selected span label
290
+ def get_text_span_label(evt: gr.SelectData):
291
+ if evt.value[-1] is None:
292
+ return -1
293
+ return int(evt.value[-1])
294
+ # and set this information to `selected`
295
+ text_output1.select(get_text_span_label, None, selected)
296
+
297
+ # update output image when we change the span (enity) selection
298
+ def update_output_image(img_input, image_output, entities, idx):
299
+ entities = ast.literal_eval(entities)
300
+ updated_image = draw_entity_boxes_on_image(img_input, entities, entity_index=idx)
301
+ return updated_image
302
+ selected.change(update_output_image, [image_input, image_output, entity_output, selected], [image_output])
303
+
304
+ run_button.click(fn=generate_predictions,
305
+ inputs=[image_input, text_input],
306
+ outputs=[image_output, text_output1, entity_output],
307
+ show_progress=True, queue=True)
308
+
309
+ demo.launch(share=False)
310
+
311
+
312
+ if __name__ == "__main__":
313
+ main()
314
+ # trigger