File size: 10,013 Bytes
861698e
 
 
 
 
 
 
 
 
 
 
 
 
 
7437080
861698e
 
 
 
 
74730ff
861698e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7437080
 
 
 
 
 
 
 
 
 
 
1e93edd
 
 
 
 
 
 
 
 
 
82240dd
1e93edd
 
 
 
 
 
 
 
 
861698e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a72aafd
861698e
1172ef2
861698e
 
1172ef2
861698e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e93edd
861698e
 
 
 
 
 
 
 
 
 
 
 
7437080
861698e
 
 
 
 
 
7437080
861698e
 
 
 
 
7437080
16586be
861698e
3fb14d4
861698e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7437080
861698e
 
74730ff
861698e
 
 
 
 
 
 
 
 
 
7437080
861698e
29d34bf
861698e
 
 
7437080
29d34bf
861698e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
import gradio as gr
import cv2
import time
import openai
import base64
import pytz
import uuid
from threading import Thread
from concurrent.futures import ThreadPoolExecutor, as_completed
from datetime import datetime
import json
import os
from moviepy.editor import ImageSequenceClip
from gradio_client import Client, file
import subprocess

api_key = os.getenv("OPEN_AI_KEY")
user_name = os.getenv("USER_NAME")
password = os.getenv("PASSWORD")

LENGTH = 3
WEBCAM = 0

MARKDOWN = """
# Conntour 
"""
AVATARS = (
    "https://assets-global.website-files.com/63d6dca820934a77a340f31e/63dfb7a21b4c08282d524010_pyramid.png",
    "https://media.roboflow.com/spaces/openai-white-logomark.png"
)

# Set your OpenAI API key
openai.api_key = api_key
MODEL="gpt-4o"
client = openai.OpenAI(api_key=api_key)

# Global variable to stop the video capture loop
stop_capture = False
alerts_mode = True

def clip_video_segment(input_video_path, start_time, duration):
    os.makedirs('videos', exist_ok=True)
    output_video_path = f"videos/{uuid.uuid4()}.mp4"

    subprocess.call([
        'ffmpeg', '-y', '-ss', str(start_time), '-i', input_video_path,
        '-t', str(duration), '-c', 'copy', output_video_path
    ])

    return output_video_path

def encode_to_video_fast(frames, fps):
    
    os.makedirs('videos', exist_ok=True)
    video_clip_path = f"videos/{uuid.uuid4()}.mp4"

    # Get frame size
    height, width, layers = frames[0].shape
    size = (width, height)

    # Define the codec and create VideoWriter object
    fourcc = cv2.VideoWriter_fourcc(*'h264')  # You can also try 'XVID', 'MJPG', etc.
    out = cv2.VideoWriter(video_clip_path, fourcc, fps, size)

    for frame in frames:
        out.write(frame)

    out.release()

    return video_clip_path


def encode_to_video(frames, fps):
    os.makedirs('videos', exist_ok=True)
    video_clip_path = f"videos/{uuid.uuid4()}.mp4"
    
    # Create a video clip from the frames using moviepy
    clip = ImageSequenceClip([frame[:, :, ::-1] for frame in frames], fps=fps)  # Convert from BGR to RGB
    clip.write_videofile(video_clip_path, codec="libx264")
    
    # Convert the video file to base64
    with open(video_clip_path, "rb") as video_file:
        video_data = base64.b64encode(video_file.read()).decode('utf-8')
    
    return video_clip_path

# Function to process video frames using GPT-4 API
def process_frames(frames, frames_to_skip = 1):
    os.makedirs('saved_frames', exist_ok=True)
    curr_frame=0
    base64Frames = []
    while curr_frame < len(frames) - 1:
        _, buffer = cv2.imencode(".jpg", frames[curr_frame])
        base64Frames.append(base64.b64encode(buffer).decode("utf-8"))
        curr_frame += frames_to_skip
    return base64Frames

# Function to check condition using GPT-4 API
def check_condition(prompt, base64Frames):
    start_time = time.time()
    print('checking condition for frames:', len(base64Frames))

        # Save frames as images


    messages = [
        {"role": "system", "content": """You are analyzing video to check if the user's condition is met. 
        Please respond with a JSON object in the following format:
        {"condition_met": true/false, "details": "optional details or summary. in the summary DON'T mention the words: image, images, frame, or frames. Instead, make it look like you were provided with video input and avoid referring to individual images or frames explicitly."}"""},
        {"role": "user", "content": [prompt, *map(lambda x: {"type": "image_url", "image_url": {"url": f'data:image/jpg;base64,{x}', "detail": "low"}}, base64Frames)]}
    ]

    response = client.chat.completions.create(
        model="gpt-4o",
        messages=messages,
        temperature=0,
        response_format={ "type": "json_object" }
    )

    end_time = time.time()
    processing_time = end_time - start_time
    frames_count = len(base64Frames)
    api_response = response.choices[0].message.content
    try:
        jsonNew = json.loads(api_response)
        print('result', response.usage.total_tokens, jsonNew)
        return frames_count, processing_time, jsonNew
    except:
        print('result', response.usage.total_tokens, api_response)
        return frames_count, processing_time, api_response
    

# Function to process video clip and update the chatbot
def process_clip(prompt, frames, chatbot):
    # Print current time in Israel
    israel_tz = pytz.timezone('Asia/Jerusalem')
    start_time = datetime.now(israel_tz).strftime('%H:%M:%S')
    print("[Start]:", start_time, len(frames))
    
    # Encode frames into a video clip
    fps = int(len(frames) / LENGTH)
    base64Frames = process_frames(frames, fps)
    frames_count, processing_time, api_response = check_condition(prompt, base64Frames)
    
    if api_response["condition_met"] == True:
        finish_time = datetime.now(israel_tz).strftime('%H:%M:%S')
        video_clip_path = encode_to_video_fast(frames, fps)
        chatbot.append(((video_clip_path,), None))
        result = f"Time: {start_time}\n"
        chatbot.append((result, None))
    
        frame_paths = []
        for i, base64_frame in enumerate(base64Frames):
            frame_data = base64.b64decode(base64_frame)
            frame_path = f'saved_frames/frame_{uuid.uuid4()}.jpg'
            with open(frame_path, "wb") as f:
                f.write(frame_data)
            frame_paths.append(frame_path)

def process_clip_from_file(prompt, frames, chatbot, fps, video_path, id):
    global stop_capture
    if not stop_capture:
        israel_tz = pytz.timezone('Asia/Jerusalem')
        start_time = datetime.now(israel_tz).strftime('%H:%M:%S')
        print("[Start]:", start_time, len(frames))
        
        frames_to_skip = int(fps)
        base64Frames = process_frames(frames, frames_to_skip)
        frames_count, processing_time, api_response = check_condition(prompt, base64Frames)
        
        result = None
        if api_response and api_response.get("condition_met", False):
            # video_clip_path = encode_to_video_fast(frames, fps)
            video_clip_path = clip_video_segment(video_path, id*LENGTH, LENGTH)
            chatbot.append(((video_clip_path,), None))
            chatbot.append((f"Event ID: {id+1}\nDetails: {api_response.get('details', '')}", None))
    
    return chatbot

# Function to capture video frames
def analyze_stream(prompt, stream, chatbot):
    global stop_capture
    stop_capture = False


    cap = cv2.VideoCapture(stream or WEBCAM)

    frames = []
    start_time = time.time()
    while not stop_capture:
        ret, frame = cap.read()
        if not ret:
            break
        frames.append(frame)
        
        # Sample the frames every 5 seconds
        if time.time() - start_time >= LENGTH:
            # Start a new thread for processing the video clip
            Thread(target=process_clip, args=(prompt, frames.copy(), chatbot,)).start()
            frames = []
            start_time = time.time()
        yield chatbot

    cap.release()
    return chatbot

def analyze_video_file(prompt, video_path, chatbot):
    global stop_capture
    stop_capture = False  # Reset the stop flag when analysis starts

    cap = cv2.VideoCapture(video_path)
    
    # Get video properties
    fps = int(cap.get(cv2.CAP_PROP_FPS))  # Frames per second
    frames_per_chunk = fps * LENGTH  # Number of frames per 5-second chunk
    
    frames = []
    chunk = 0
    
    # Create a thread pool for concurrent processing
    with ThreadPoolExecutor(max_workers=6) as executor:
        futures = []

        while not stop_capture:
            ret, frame = cap.read()
            if not ret:
                break
            frames.append(frame)
            
            # Split the video into chunks of frames corresponding to 5 seconds
            if len(frames) >= frames_per_chunk:
                futures.append(executor.submit(process_clip_from_file, prompt, frames.copy(), chatbot, fps, video_path, chunk))
                frames = []
                chunk+=1
        
        # If any remaining frames that are less than 5 seconds, process them as a final chunk
        if len(frames) > 0:
            futures.append(executor.submit(process_clip_from_file, prompt, frames.copy(), chatbot, fps, video_path, chunk))
            chunk+=1
        
        cap.release()
        # Yield results as soon as each thread completes
        for future in as_completed(futures):
            result = future.result()
            yield result
    return chatbot


# Function to stop video capture
def stop_capture_func():
    global stop_capture
    stop_capture = True

# Gradio interface
with gr.Blocks(title="Conntour", fill_height=True) as demo:
    with gr.Tab("Analyze"):
        with gr.Row():
            video = gr.Video(label="Video Source")
            with gr.Column():
                chatbot = gr.Chatbot(label="Events", bubble_full_width=False, avatar_images=AVATARS)
                prompt = gr.Textbox(label="Enter your prompt alert")
                start_btn = gr.Button("Start")
                stop_btn = gr.Button("Stop")
            start_btn.click(analyze_video_file, inputs=[prompt, video, chatbot], outputs=[chatbot], queue=True)
            stop_btn.click(stop_capture_func)
    with gr.Tab("Alerts"):
        with gr.Row():
            stream = gr.Textbox(label="Video Source", value="https://streamapi2.eu.loclx.io/video_feed/101 OR rtsp://admin:[email protected]:5678/Streaming/Channels/101")
            with gr.Column():
                chatbot = gr.Chatbot(label="Events", bubble_full_width=False, avatar_images=AVATARS)
                prompt = gr.Textbox(label="Enter your prompt alert")
                start_btn = gr.Button("Start")
                stop_btn = gr.Button("Stop")
            start_btn.click(analyze_stream, inputs=[prompt, stream, chatbot], outputs=[chatbot], queue=True)
            stop_btn.click(stop_capture_func)

demo.launch(favicon_path='favicon.ico', auth=(user_name, password))