File size: 10,013 Bytes
861698e 7437080 861698e 74730ff 861698e 7437080 1e93edd 82240dd 1e93edd 861698e a72aafd 861698e 1172ef2 861698e 1172ef2 861698e 1e93edd 861698e 7437080 861698e 7437080 861698e 7437080 16586be 861698e 3fb14d4 861698e 7437080 861698e 74730ff 861698e 7437080 861698e 29d34bf 861698e 7437080 29d34bf 861698e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 |
import gradio as gr
import cv2
import time
import openai
import base64
import pytz
import uuid
from threading import Thread
from concurrent.futures import ThreadPoolExecutor, as_completed
from datetime import datetime
import json
import os
from moviepy.editor import ImageSequenceClip
from gradio_client import Client, file
import subprocess
api_key = os.getenv("OPEN_AI_KEY")
user_name = os.getenv("USER_NAME")
password = os.getenv("PASSWORD")
LENGTH = 3
WEBCAM = 0
MARKDOWN = """
# Conntour
"""
AVATARS = (
"https://assets-global.website-files.com/63d6dca820934a77a340f31e/63dfb7a21b4c08282d524010_pyramid.png",
"https://media.roboflow.com/spaces/openai-white-logomark.png"
)
# Set your OpenAI API key
openai.api_key = api_key
MODEL="gpt-4o"
client = openai.OpenAI(api_key=api_key)
# Global variable to stop the video capture loop
stop_capture = False
alerts_mode = True
def clip_video_segment(input_video_path, start_time, duration):
os.makedirs('videos', exist_ok=True)
output_video_path = f"videos/{uuid.uuid4()}.mp4"
subprocess.call([
'ffmpeg', '-y', '-ss', str(start_time), '-i', input_video_path,
'-t', str(duration), '-c', 'copy', output_video_path
])
return output_video_path
def encode_to_video_fast(frames, fps):
os.makedirs('videos', exist_ok=True)
video_clip_path = f"videos/{uuid.uuid4()}.mp4"
# Get frame size
height, width, layers = frames[0].shape
size = (width, height)
# Define the codec and create VideoWriter object
fourcc = cv2.VideoWriter_fourcc(*'h264') # You can also try 'XVID', 'MJPG', etc.
out = cv2.VideoWriter(video_clip_path, fourcc, fps, size)
for frame in frames:
out.write(frame)
out.release()
return video_clip_path
def encode_to_video(frames, fps):
os.makedirs('videos', exist_ok=True)
video_clip_path = f"videos/{uuid.uuid4()}.mp4"
# Create a video clip from the frames using moviepy
clip = ImageSequenceClip([frame[:, :, ::-1] for frame in frames], fps=fps) # Convert from BGR to RGB
clip.write_videofile(video_clip_path, codec="libx264")
# Convert the video file to base64
with open(video_clip_path, "rb") as video_file:
video_data = base64.b64encode(video_file.read()).decode('utf-8')
return video_clip_path
# Function to process video frames using GPT-4 API
def process_frames(frames, frames_to_skip = 1):
os.makedirs('saved_frames', exist_ok=True)
curr_frame=0
base64Frames = []
while curr_frame < len(frames) - 1:
_, buffer = cv2.imencode(".jpg", frames[curr_frame])
base64Frames.append(base64.b64encode(buffer).decode("utf-8"))
curr_frame += frames_to_skip
return base64Frames
# Function to check condition using GPT-4 API
def check_condition(prompt, base64Frames):
start_time = time.time()
print('checking condition for frames:', len(base64Frames))
# Save frames as images
messages = [
{"role": "system", "content": """You are analyzing video to check if the user's condition is met.
Please respond with a JSON object in the following format:
{"condition_met": true/false, "details": "optional details or summary. in the summary DON'T mention the words: image, images, frame, or frames. Instead, make it look like you were provided with video input and avoid referring to individual images or frames explicitly."}"""},
{"role": "user", "content": [prompt, *map(lambda x: {"type": "image_url", "image_url": {"url": f'data:image/jpg;base64,{x}', "detail": "low"}}, base64Frames)]}
]
response = client.chat.completions.create(
model="gpt-4o",
messages=messages,
temperature=0,
response_format={ "type": "json_object" }
)
end_time = time.time()
processing_time = end_time - start_time
frames_count = len(base64Frames)
api_response = response.choices[0].message.content
try:
jsonNew = json.loads(api_response)
print('result', response.usage.total_tokens, jsonNew)
return frames_count, processing_time, jsonNew
except:
print('result', response.usage.total_tokens, api_response)
return frames_count, processing_time, api_response
# Function to process video clip and update the chatbot
def process_clip(prompt, frames, chatbot):
# Print current time in Israel
israel_tz = pytz.timezone('Asia/Jerusalem')
start_time = datetime.now(israel_tz).strftime('%H:%M:%S')
print("[Start]:", start_time, len(frames))
# Encode frames into a video clip
fps = int(len(frames) / LENGTH)
base64Frames = process_frames(frames, fps)
frames_count, processing_time, api_response = check_condition(prompt, base64Frames)
if api_response["condition_met"] == True:
finish_time = datetime.now(israel_tz).strftime('%H:%M:%S')
video_clip_path = encode_to_video_fast(frames, fps)
chatbot.append(((video_clip_path,), None))
result = f"Time: {start_time}\n"
chatbot.append((result, None))
frame_paths = []
for i, base64_frame in enumerate(base64Frames):
frame_data = base64.b64decode(base64_frame)
frame_path = f'saved_frames/frame_{uuid.uuid4()}.jpg'
with open(frame_path, "wb") as f:
f.write(frame_data)
frame_paths.append(frame_path)
def process_clip_from_file(prompt, frames, chatbot, fps, video_path, id):
global stop_capture
if not stop_capture:
israel_tz = pytz.timezone('Asia/Jerusalem')
start_time = datetime.now(israel_tz).strftime('%H:%M:%S')
print("[Start]:", start_time, len(frames))
frames_to_skip = int(fps)
base64Frames = process_frames(frames, frames_to_skip)
frames_count, processing_time, api_response = check_condition(prompt, base64Frames)
result = None
if api_response and api_response.get("condition_met", False):
# video_clip_path = encode_to_video_fast(frames, fps)
video_clip_path = clip_video_segment(video_path, id*LENGTH, LENGTH)
chatbot.append(((video_clip_path,), None))
chatbot.append((f"Event ID: {id+1}\nDetails: {api_response.get('details', '')}", None))
return chatbot
# Function to capture video frames
def analyze_stream(prompt, stream, chatbot):
global stop_capture
stop_capture = False
cap = cv2.VideoCapture(stream or WEBCAM)
frames = []
start_time = time.time()
while not stop_capture:
ret, frame = cap.read()
if not ret:
break
frames.append(frame)
# Sample the frames every 5 seconds
if time.time() - start_time >= LENGTH:
# Start a new thread for processing the video clip
Thread(target=process_clip, args=(prompt, frames.copy(), chatbot,)).start()
frames = []
start_time = time.time()
yield chatbot
cap.release()
return chatbot
def analyze_video_file(prompt, video_path, chatbot):
global stop_capture
stop_capture = False # Reset the stop flag when analysis starts
cap = cv2.VideoCapture(video_path)
# Get video properties
fps = int(cap.get(cv2.CAP_PROP_FPS)) # Frames per second
frames_per_chunk = fps * LENGTH # Number of frames per 5-second chunk
frames = []
chunk = 0
# Create a thread pool for concurrent processing
with ThreadPoolExecutor(max_workers=6) as executor:
futures = []
while not stop_capture:
ret, frame = cap.read()
if not ret:
break
frames.append(frame)
# Split the video into chunks of frames corresponding to 5 seconds
if len(frames) >= frames_per_chunk:
futures.append(executor.submit(process_clip_from_file, prompt, frames.copy(), chatbot, fps, video_path, chunk))
frames = []
chunk+=1
# If any remaining frames that are less than 5 seconds, process them as a final chunk
if len(frames) > 0:
futures.append(executor.submit(process_clip_from_file, prompt, frames.copy(), chatbot, fps, video_path, chunk))
chunk+=1
cap.release()
# Yield results as soon as each thread completes
for future in as_completed(futures):
result = future.result()
yield result
return chatbot
# Function to stop video capture
def stop_capture_func():
global stop_capture
stop_capture = True
# Gradio interface
with gr.Blocks(title="Conntour", fill_height=True) as demo:
with gr.Tab("Analyze"):
with gr.Row():
video = gr.Video(label="Video Source")
with gr.Column():
chatbot = gr.Chatbot(label="Events", bubble_full_width=False, avatar_images=AVATARS)
prompt = gr.Textbox(label="Enter your prompt alert")
start_btn = gr.Button("Start")
stop_btn = gr.Button("Stop")
start_btn.click(analyze_video_file, inputs=[prompt, video, chatbot], outputs=[chatbot], queue=True)
stop_btn.click(stop_capture_func)
with gr.Tab("Alerts"):
with gr.Row():
stream = gr.Textbox(label="Video Source", value="https://streamapi2.eu.loclx.io/video_feed/101 OR rtsp://admin:[email protected]:5678/Streaming/Channels/101")
with gr.Column():
chatbot = gr.Chatbot(label="Events", bubble_full_width=False, avatar_images=AVATARS)
prompt = gr.Textbox(label="Enter your prompt alert")
start_btn = gr.Button("Start")
stop_btn = gr.Button("Stop")
start_btn.click(analyze_stream, inputs=[prompt, stream, chatbot], outputs=[chatbot], queue=True)
stop_btn.click(stop_capture_func)
demo.launch(favicon_path='favicon.ico', auth=(user_name, password)) |