Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,165 +1,196 @@
|
|
1 |
-
import
|
2 |
-
|
3 |
-
from PyPDF2 import PdfReader
|
4 |
-
from langchain.text_splitter import CharacterTextSplitter
|
5 |
-
from langchain.embeddings import HuggingFaceEmbeddings
|
6 |
-
from langchain.vectorstores import FAISS
|
7 |
-
# from langchain.chat_models import ChatOpenAI
|
8 |
-
from langchain.memory import ConversationBufferMemory
|
9 |
-
from langchain.chains import ConversationalRetrievalChain
|
10 |
-
from htmlTemplates import css, bot_template, user_template
|
11 |
-
from langchain.llms import HuggingFaceHub
|
12 |
import os
|
13 |
-
# from transformers import T5Tokenizer, T5ForConditionalGeneration
|
14 |
-
# from langchain.callbacks import get_openai_callback
|
15 |
-
|
16 |
-
hub_token = os.environ["HUGGINGFACE_HUB_TOKEN"]
|
17 |
-
|
18 |
-
def get_pdf_text(pdf_docs):
|
19 |
-
text = ""
|
20 |
-
for pdf in pdf_docs:
|
21 |
-
pdf_reader = PdfReader(pdf)
|
22 |
-
for page in pdf_reader.pages:
|
23 |
-
text += page.extract_text()
|
24 |
-
return text
|
25 |
|
|
|
|
|
26 |
|
27 |
-
|
28 |
-
|
29 |
-
separator="\n",
|
30 |
-
chunk_size=200,
|
31 |
-
chunk_overlap=20,
|
32 |
-
length_function=len
|
33 |
-
)
|
34 |
-
chunks = text_splitter.split_text(text)
|
35 |
-
return chunks
|
36 |
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
embeddings = HuggingFaceEmbeddings()
|
42 |
-
vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
|
43 |
-
return vectorstore
|
44 |
|
|
|
|
|
|
|
45 |
|
46 |
-
def get_conversation_chain(vectorstore):
|
47 |
-
# llm = ChatOpenAI(model_name="gpt-3.5-turbo-16k")
|
48 |
-
# tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-base")
|
49 |
-
# model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-base")
|
50 |
|
51 |
-
llm = HuggingFaceHub(repo_id="mistralai/Mistral-7B-v0.1", huggingfacehub_api_token=hub_token, model_kwargs={"temperature":0.5, "max_length":20})
|
52 |
|
53 |
-
memory = ConversationBufferMemory(
|
54 |
-
memory_key='chat_history', return_messages=True)
|
55 |
-
conversation_chain = ConversationalRetrievalChain.from_llm(
|
56 |
-
llm=llm,
|
57 |
-
retriever=vectorstore.as_retriever(),
|
58 |
-
memory=memory
|
59 |
-
)
|
60 |
-
return conversation_chain
|
61 |
|
62 |
|
63 |
-
def handle_userinput(user_question):
|
64 |
-
response = st.session_state.conversation
|
65 |
-
reply = response.run(user_question)
|
66 |
-
st.write(reply)
|
67 |
-
# st.session_state.chat_history = response['chat_history']
|
68 |
|
69 |
-
# for i, message in enumerate(st.session_state.chat_history):
|
70 |
-
# if i % 2 == 0:
|
71 |
-
# st.write(user_template.replace(
|
72 |
-
# "{{MSG}}", message.content), unsafe_allow_html=True)
|
73 |
-
# else:
|
74 |
-
# st.write(bot_template.replace(
|
75 |
-
# "{{MSG}}", message.content), unsafe_allow_html=True)
|
76 |
|
77 |
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
|
106 |
-
|
107 |
-
|
108 |
|
109 |
-
|
110 |
-
|
|
|
111 |
|
112 |
-
|
113 |
-
|
114 |
-
vectorstore)
|
115 |
-
|
116 |
-
if __name__ == '__main__':
|
117 |
-
main()
|
118 |
|
119 |
|
120 |
|
121 |
|
122 |
|
123 |
|
124 |
-
# import os
|
125 |
-
# import getpass
|
126 |
-
# import streamlit as st
|
127 |
-
# from langchain.document_loaders import PyPDFLoader
|
128 |
-
# from langchain.text_splitter import RecursiveCharacterTextSplitter
|
129 |
-
# from langchain.embeddings import HuggingFaceEmbeddings
|
130 |
-
# from langchain.vectorstores import Chroma
|
131 |
-
# from langchain import HuggingFaceHub
|
132 |
-
# from langchain.chains import RetrievalQA
|
133 |
-
# # __import__('pysqlite3')
|
134 |
-
# # import sys
|
135 |
-
# # sys.modules['sqlite3'] = sys.modules.pop('pysqlite3')
|
136 |
|
137 |
|
138 |
-
# # load huggingface api key
|
139 |
-
# hubtok = os.environ["HUGGINGFACE_HUB_TOKEN"]
|
140 |
|
141 |
-
# # use streamlit file uploader to ask user for file
|
142 |
-
# # file = st.file_uploader("Upload PDF")
|
143 |
|
144 |
|
145 |
-
# path = "Geeta.pdf"
|
146 |
-
# loader = PyPDFLoader(path)
|
147 |
-
# pages = loader.load()
|
148 |
|
149 |
-
# # st.write(pages)
|
150 |
|
151 |
-
# splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=20)
|
152 |
-
# docs = splitter.split_documents(pages)
|
153 |
|
154 |
-
# embeddings = HuggingFaceEmbeddings()
|
155 |
-
# doc_search = Chroma.from_documents(docs, embeddings)
|
156 |
|
157 |
-
# repo_id = "tiiuae/falcon-7b"
|
158 |
-
# llm = HuggingFaceHub(repo_id=repo_id, huggingfacehub_api_token=hubtok, model_kwargs={'temperature': 0.2,'max_length': 1000})
|
159 |
|
160 |
-
# from langchain.schema import retriever
|
161 |
-
# retireval_chain = RetrievalQA.from_chain_type(llm, chain_type="stuff", retriever=doc_search.as_retriever())
|
162 |
|
163 |
-
# if query := st.chat_input("Enter a question: "):
|
164 |
-
# with st.chat_message("assistant"):
|
165 |
-
# st.write(retireval_chain.run(query))
|
|
|
1 |
+
import google.generativeai as palm
|
2 |
+
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
+
# Set your API key
|
6 |
+
palm.configure(api_key = os.environ['PALM_KEY'])
|
7 |
|
8 |
+
# Select the PaLM 2 model
|
9 |
+
model = 'models/text-bison-001'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
+
# Generate text
|
12 |
+
if prompt := st.chat_input("Ask your query..."):
|
13 |
+
enprom = f"""Answer the below provided input in context to Bhagwad Geeta. Use the verses and chapters sentences as references to your answer with suggestions
|
14 |
+
coming from Bhagwad Geeta. Your answer to below input should only be in context to Bhagwad geeta only.\nInput= {prompt}"""
|
15 |
+
completion = palm.generate_text(model=model, prompt=enprom, temperature=0.5, max_output_tokens=800)
|
16 |
|
17 |
+
# response = palm.chat(messages=["Hello."])
|
18 |
+
# print(response.last) # 'Hello! What can I help you with?'
|
19 |
+
# response.reply("Can you tell me a joke?")
|
|
|
|
|
|
|
20 |
|
21 |
+
# Print the generated text
|
22 |
+
with st.chat_message("Assistant"):
|
23 |
+
st.write(completion.result)
|
24 |
|
|
|
|
|
|
|
|
|
25 |
|
|
|
26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
|
|
|
|
|
|
|
|
|
|
|
29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
|
32 |
+
# import streamlit as st
|
33 |
+
# from dotenv import load_dotenv
|
34 |
+
# from PyPDF2 import PdfReader
|
35 |
+
# from langchain.text_splitter import CharacterTextSplitter
|
36 |
+
# from langchain.embeddings import HuggingFaceEmbeddings
|
37 |
+
# from langchain.vectorstores import FAISS
|
38 |
+
# # from langchain.chat_models import ChatOpenAI
|
39 |
+
# from langchain.memory import ConversationBufferMemory
|
40 |
+
# from langchain.chains import ConversationalRetrievalChain
|
41 |
+
# from htmlTemplates import css, bot_template, user_template
|
42 |
+
# from langchain.llms import HuggingFaceHub
|
43 |
+
# import os
|
44 |
+
# # from transformers import T5Tokenizer, T5ForConditionalGeneration
|
45 |
+
# # from langchain.callbacks import get_openai_callback
|
46 |
+
|
47 |
+
# hub_token = os.environ["HUGGINGFACE_HUB_TOKEN"]
|
48 |
+
|
49 |
+
# def get_pdf_text(pdf_docs):
|
50 |
+
# text = ""
|
51 |
+
# for pdf in pdf_docs:
|
52 |
+
# pdf_reader = PdfReader(pdf)
|
53 |
+
# for page in pdf_reader.pages:
|
54 |
+
# text += page.extract_text()
|
55 |
+
# return text
|
56 |
+
|
57 |
+
|
58 |
+
# def get_text_chunks(text):
|
59 |
+
# text_splitter = CharacterTextSplitter(
|
60 |
+
# separator="\n",
|
61 |
+
# chunk_size=200,
|
62 |
+
# chunk_overlap=20,
|
63 |
+
# length_function=len
|
64 |
+
# )
|
65 |
+
# chunks = text_splitter.split_text(text)
|
66 |
+
# return chunks
|
67 |
+
|
68 |
+
|
69 |
+
# def get_vectorstore(text_chunks):
|
70 |
+
# # embeddings = OpenAIEmbeddings()
|
71 |
+
# # embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl")
|
72 |
+
# embeddings = HuggingFaceEmbeddings()
|
73 |
+
# vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
|
74 |
+
# return vectorstore
|
75 |
+
|
76 |
+
|
77 |
+
# def get_conversation_chain(vectorstore):
|
78 |
+
# # llm = ChatOpenAI(model_name="gpt-3.5-turbo-16k")
|
79 |
+
# # tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-base")
|
80 |
+
# # model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-base")
|
81 |
+
|
82 |
+
# llm = HuggingFaceHub(repo_id="mistralai/Mistral-7B-v0.1", huggingfacehub_api_token=hub_token, model_kwargs={"temperature":0.5, "max_length":20})
|
83 |
+
|
84 |
+
# memory = ConversationBufferMemory(
|
85 |
+
# memory_key='chat_history', return_messages=True)
|
86 |
+
# conversation_chain = ConversationalRetrievalChain.from_llm(
|
87 |
+
# llm=llm,
|
88 |
+
# retriever=vectorstore.as_retriever(),
|
89 |
+
# memory=memory
|
90 |
+
# )
|
91 |
+
# return conversation_chain
|
92 |
+
|
93 |
|
94 |
+
# def handle_userinput(user_question):
|
95 |
+
# response = st.session_state.conversation
|
96 |
+
# reply = response.run(user_question)
|
97 |
+
# st.write(reply)
|
98 |
+
# # st.session_state.chat_history = response['chat_history']
|
99 |
+
|
100 |
+
# # for i, message in enumerate(st.session_state.chat_history):
|
101 |
+
# # if i % 2 == 0:
|
102 |
+
# # st.write(user_template.replace(
|
103 |
+
# # "{{MSG}}", message.content), unsafe_allow_html=True)
|
104 |
+
# # else:
|
105 |
+
# # st.write(bot_template.replace(
|
106 |
+
# # "{{MSG}}", message.content), unsafe_allow_html=True)
|
107 |
+
|
108 |
+
|
109 |
+
# def main():
|
110 |
+
# load_dotenv()
|
111 |
+
# st.set_page_config(page_title="Chat with multiple PDFs",
|
112 |
+
# page_icon=":books:")
|
113 |
+
# st.write(css, unsafe_allow_html=True)
|
114 |
+
|
115 |
+
# if "conversation" not in st.session_state:
|
116 |
+
# st.session_state.conversation = None
|
117 |
+
# if "chat_history" not in st.session_state:
|
118 |
+
# st.session_state.chat_history = None
|
119 |
+
|
120 |
+
# st.header("Chat with multiple PDFs :books:")
|
121 |
+
# user_question = st.text_input("Ask a question about your documents:")
|
122 |
+
# if user_question:
|
123 |
+
# handle_userinput(user_question)
|
124 |
+
|
125 |
+
# with st.sidebar:
|
126 |
+
# st.subheader("Your documents")
|
127 |
+
# pdf_docs = st.file_uploader(
|
128 |
+
# "Upload your PDFs here and click on 'Process'", accept_multiple_files=True)
|
129 |
+
# if st.button("Process"):
|
130 |
+
# if(len(pdf_docs) == 0):
|
131 |
+
# st.error("Please upload at least one PDF")
|
132 |
+
# else:
|
133 |
+
# with st.spinner("Processing"):
|
134 |
+
# # get pdf text
|
135 |
+
# raw_text = get_pdf_text(pdf_docs)
|
136 |
+
|
137 |
+
# # get the text chunks
|
138 |
+
# text_chunks = get_text_chunks(raw_text)
|
139 |
|
140 |
+
# # create vector store
|
141 |
+
# vectorstore = get_vectorstore(text_chunks)
|
142 |
|
143 |
+
# # create conversation chain
|
144 |
+
# st.session_state.conversation = get_conversation_chain(
|
145 |
+
# vectorstore)
|
146 |
|
147 |
+
# if __name__ == '__main__':
|
148 |
+
# main()
|
|
|
|
|
|
|
|
|
149 |
|
150 |
|
151 |
|
152 |
|
153 |
|
154 |
|
155 |
+
# # import os
|
156 |
+
# # import getpass
|
157 |
+
# # import streamlit as st
|
158 |
+
# # from langchain.document_loaders import PyPDFLoader
|
159 |
+
# # from langchain.text_splitter import RecursiveCharacterTextSplitter
|
160 |
+
# # from langchain.embeddings import HuggingFaceEmbeddings
|
161 |
+
# # from langchain.vectorstores import Chroma
|
162 |
+
# # from langchain import HuggingFaceHub
|
163 |
+
# # from langchain.chains import RetrievalQA
|
164 |
+
# # # __import__('pysqlite3')
|
165 |
+
# # # import sys
|
166 |
+
# # # sys.modules['sqlite3'] = sys.modules.pop('pysqlite3')
|
167 |
|
168 |
|
169 |
+
# # # load huggingface api key
|
170 |
+
# # hubtok = os.environ["HUGGINGFACE_HUB_TOKEN"]
|
171 |
|
172 |
+
# # # use streamlit file uploader to ask user for file
|
173 |
+
# # # file = st.file_uploader("Upload PDF")
|
174 |
|
175 |
|
176 |
+
# # path = "Geeta.pdf"
|
177 |
+
# # loader = PyPDFLoader(path)
|
178 |
+
# # pages = loader.load()
|
179 |
|
180 |
+
# # # st.write(pages)
|
181 |
|
182 |
+
# # splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=20)
|
183 |
+
# # docs = splitter.split_documents(pages)
|
184 |
|
185 |
+
# # embeddings = HuggingFaceEmbeddings()
|
186 |
+
# # doc_search = Chroma.from_documents(docs, embeddings)
|
187 |
|
188 |
+
# # repo_id = "tiiuae/falcon-7b"
|
189 |
+
# # llm = HuggingFaceHub(repo_id=repo_id, huggingfacehub_api_token=hubtok, model_kwargs={'temperature': 0.2,'max_length': 1000})
|
190 |
|
191 |
+
# # from langchain.schema import retriever
|
192 |
+
# # retireval_chain = RetrievalQA.from_chain_type(llm, chain_type="stuff", retriever=doc_search.as_retriever())
|
193 |
|
194 |
+
# # if query := st.chat_input("Enter a question: "):
|
195 |
+
# # with st.chat_message("assistant"):
|
196 |
+
# # st.write(retireval_chain.run(query))
|