File size: 5,892 Bytes
cfe5488
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
# from datasets import load_dataset
# from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments, Trainer
# import torch

# # Check for GPU
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# print(f"Using device: {device}")

# # Step 1: Load the dataset
# dataset = load_dataset("wraps/codegen-flutter-v1")

# # Step 2: Load the tokenizer and model
# model_name = "Salesforce/codegen-350M-mono"
# tokenizer = AutoTokenizer.from_pretrained(model_name)
# tokenizer.pad_token = tokenizer.eos_token  # Set the padding token
# model = AutoModelForCausalLM.from_pretrained(model_name).to(device)

# # Step 3: Tokenize the dataset
# def tokenize_function(examples):
#     return tokenizer(examples["content"], truncation=True, padding="max_length", max_length=512)

# tokenized_dataset = dataset.map(tokenize_function, batched=True, remove_columns=["content"])

# # Step 4: Set up training arguments
# training_args = TrainingArguments(
#     output_dir="./flutter_codegen_model",
#     evaluation_strategy="epoch",
#     learning_rate=5e-5,
#     per_device_train_batch_size=4,  # Adjust based on GPU memory
#     num_train_epochs=3,
#     save_steps=500,
#     save_total_limit=2,
#     fp16=torch.cuda.is_available(),  # Use mixed precision if GPU is available
#     logging_dir="./logs",
#     logging_steps=10,
#     report_to="none"
# )

# # Step 5: Initialize the Trainer
# trainer = Trainer(
#     model=model,
#     args=training_args,
#     train_dataset=tokenized_dataset["train"],
#     eval_dataset=tokenized_dataset["validation"],
#     tokenizer=tokenizer,
# )

# # Step 6: Train the model
# trainer.train()

# # Step 7: Save the fine-tuned model
# model.save_pretrained("./flutter_codegen_model")
# tokenizer.save_pretrained("./flutter_codegen_model")

# # # # # # # # # # # # # # # # #
#   Train on multiple datasets  #
# # # # # # # # # # # # # # # # #

from datasets import load_dataset, concatenate_datasets
from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments, Trainer
import torch

# Check for GPU
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")

# Step 1: Load the datasets
print("Loading datasets...")
dataset1 = load_dataset("wraps/codegen-flutter-v1")
dataset2 = load_dataset("limcheekin/flutter-website-3.7")
dataset3 = load_dataset("deepklarity/top-flutter-packages")

# Step 2: Preprocess datasets to extract relevant text
def preprocess_dataset1(example):
    return {"text": example["content"]}

def preprocess_dataset2(example):
    return {"text": example["text"]}

def preprocess_dataset3(example):
    # Combine title and description into one text entry
    return {"text": f"{example['title']} - {example['description']}"}

print("Preprocessing datasets...")
dataset1_train = dataset1["train"].map(preprocess_dataset1, remove_columns=["repo_id", "file_path", "content", "__index_level_0__"])
dataset2_train = dataset2["train"].map(preprocess_dataset2, remove_columns=["id", "source"])
dataset3_train = dataset3["train"].map(preprocess_dataset3, remove_columns=["title", "description", "likes", "dependencies"])

# Combine all datasets into a single dataset
print("Combining datasets...")
combined_dataset = concatenate_datasets([dataset1_train, dataset2_train, dataset3_train])

# Step 3: Create train-validation split
print("Creating train-validation split...")
train_test_split = combined_dataset.train_test_split(test_size=0.1, seed=42)
train_dataset = train_test_split["train"]
validation_dataset = train_test_split["test"]

# Step 4: Load the tokenizer and model from the checkpoint
print("Loading tokenizer and model from checkpoint...")
checkpoint_path = "./flutter_codegen_model/checkpoint-1500"
tokenizer = AutoTokenizer.from_pretrained(checkpoint_path)
tokenizer.pad_token = tokenizer.eos_token  # Set the padding token
model = AutoModelForCausalLM.from_pretrained(checkpoint_path).to(device)

# Step 5: Tokenize the datasets
def tokenize_function(examples):
    # Tokenize the text and add labels
    tokenized = tokenizer(
        examples["text"],
        truncation=True,
        padding="max_length",
        max_length=512,
    )
    tokenized["labels"] = tokenized["input_ids"].copy()  # Duplicate input_ids as labels
    return tokenized

print("Tokenizing datasets...")
tokenized_train_dataset = train_dataset.map(tokenize_function, batched=True, remove_columns=["text"])
tokenized_validation_dataset = validation_dataset.map(tokenize_function, batched=True, remove_columns=["text"])

# Step 6: Set up training arguments
print("Setting up training arguments...")
training_args = TrainingArguments(
    output_dir="./flutter_codegen_model",
    evaluation_strategy="epoch",
    learning_rate=5e-5,
    per_device_train_batch_size=4,  # Adjust based on GPU memory
    num_train_epochs=3,
    save_steps=500,
    save_total_limit=2,
    fp16=torch.cuda.is_available(),  # Use mixed precision if GPU is available
    logging_dir="./logs",
    logging_steps=10,
    resume_from_checkpoint=checkpoint_path,  # Resume from the checkpoint
    report_to="none"
)

# Step 7: Initialize the Trainer
print("Initializing Trainer...")
trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=tokenized_train_dataset,
    eval_dataset=tokenized_validation_dataset,  # Use the new validation dataset
    tokenizer=tokenizer,
)

# Step 8: Train the model
print("Starting training from checkpoint...")
trainer.train()

# Step 9: Save the fine-tuned model
print("Saving the model...")
model.save_pretrained("./flutter_codegen_model")
tokenizer.save_pretrained("./flutter_codegen_model")

print("Training complete. Model saved to './flutter_codegen_model'.")