Update app.py
Browse files
app.py
CHANGED
@@ -1,22 +1,27 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
import torch
|
|
|
|
|
4 |
|
5 |
# Charger le modèle
|
6 |
model_name = "bigcode/starcoder2-15b-instruct-v0.1"
|
7 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
|
|
|
|
|
8 |
model = AutoModelForCausalLM.from_pretrained(
|
9 |
model_name,
|
10 |
-
torch_dtype=torch.float16
|
11 |
-
)
|
12 |
|
13 |
# Fonction pour générer du texte
|
14 |
def generate_text(prompt):
|
15 |
-
|
16 |
-
inputs = tokenizer(prompt, return_tensors="pt")
|
17 |
outputs = model.generate(inputs["input_ids"], max_length=200)
|
18 |
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
19 |
|
|
|
20 |
# Interface utilisateur Gradio
|
21 |
interface = gr.Interface(
|
22 |
fn=generate_text,
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
import torch
|
4 |
+
from accelerate import init_empty_weights
|
5 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
6 |
|
7 |
# Charger le modèle
|
8 |
model_name = "bigcode/starcoder2-15b-instruct-v0.1"
|
9 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
10 |
+
|
11 |
+
# Initialisation conditionnelle
|
12 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
13 |
model = AutoModelForCausalLM.from_pretrained(
|
14 |
model_name,
|
15 |
+
torch_dtype=torch.float16 if device == "cuda" else torch.float32
|
16 |
+
).to(device)
|
17 |
|
18 |
# Fonction pour générer du texte
|
19 |
def generate_text(prompt):
|
20 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(device)
|
|
|
21 |
outputs = model.generate(inputs["input_ids"], max_length=200)
|
22 |
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
23 |
|
24 |
+
|
25 |
# Interface utilisateur Gradio
|
26 |
interface = gr.Interface(
|
27 |
fn=generate_text,
|