search_agent / web_crawler.py
Eddie Pick
Improvements
6f80de5 unverified
raw
history blame
6.08 kB
from concurrent.futures import ThreadPoolExecutor
from urllib.parse import quote
import os
import io
from trafilatura import extract
from selenium.common.exceptions import TimeoutException
from langchain_core.documents.base import Document
from langchain_experimental.text_splitter import SemanticChunker
from langchain.text_splitter import RecursiveCharacterTextSplitter, TokenTextSplitter
from langchain_community.vectorstores.faiss import FAISS
from langsmith import traceable
import requests
import pdfplumber
@traceable(run_type="tool", name="get_sources")
def get_sources(query, max_pages=10, domain=None):
search_query = query
if domain:
search_query += f" site:{domain}"
url = f"https://api.search.brave.com/res/v1/web/search?q={quote(search_query)}&count={max_pages}"
headers = {
'Accept': 'application/json',
'Accept-Encoding': 'gzip',
'X-Subscription-Token': os.getenv("BRAVE_SEARCH_API_KEY")
}
try:
response = requests.get(url, headers=headers, timeout=30)
if response.status_code != 200:
return []
json_response = response.json()
if 'web' not in json_response or 'results' not in json_response['web']:
print(response.text)
raise Exception('Invalid API response format')
final_results = [{
'title': result['title'],
'link': result['url'],
'snippet': extract(result['description'], output_format='txt', include_tables=False, include_images=False, include_formatting=True),
'favicon': result.get('profile', {}).get('img', '')
} for result in json_response['web']['results']]
return final_results
except Exception as error:
print('Error fetching search results:', error)
raise
def fetch_with_selenium(url, driver, timeout=8,):
try:
driver.set_page_load_timeout(timeout)
driver.get(url)
driver.execute_script("window.scrollTo(0, document.body.scrollHeight);")
html = driver.page_source
except TimeoutException:
print(f"Page load timed out after {timeout} seconds.")
html = None
finally:
driver.quit()
return html
def fetch_with_timeout(url, timeout=8):
try:
response = requests.get(url, timeout=timeout)
response.raise_for_status()
return response
except requests.RequestException as error:
return None
def process_source(source):
url = source['link']
response = fetch_with_timeout(url, 2)
if response:
content_type = response.headers.get('Content-Type')
if content_type:
if content_type.startswith('application/pdf'):
# The response is a PDF file
pdf_content = response.content
# Create a file-like object from the bytes
pdf_file = io.BytesIO(pdf_content)
# Extract text from PDF using pdfplumber
with pdfplumber.open(pdf_file) as pdf:
text = ""
for page in pdf.pages:
text += page.extract_text()
return {**source, 'page_content': text}
elif content_type.startswith('text/html'):
# The response is an HTML file
html = response.text
main_content = extract(html, output_format='txt', include_links=True)
return {**source, 'page_content': main_content}
else:
print(f"Skipping {url}! Unsupported content type: {content_type}")
return {**source, 'page_content': source['snippet']}
else:
print(f"Skipping {url}! No content type")
return {**source, 'page_content': source['snippet']}
return {**source, 'page_content': None}
@traceable(run_type="tool", name="get_links_contents")
def get_links_contents(sources, get_driver_func=None, use_selenium=False):
with ThreadPoolExecutor() as executor:
results = list(executor.map(process_source, sources))
if get_driver_func is None or not use_selenium:
return [result for result in results if result is not None and result['page_content']]
for result in results:
if result['page_content'] is None:
url = result['link']
print(f"Fetching with selenium {url}")
driver = get_driver_func()
html = fetch_with_selenium(url, driver)
main_content = extract(html, output_format='txt', include_links=True)
if main_content:
result['page_content'] = main_content
return results
@traceable(run_type="embedding")
def vectorize(contents, embedding_model):
documents = []
for content in contents:
try:
page_content = content['page_content']
if page_content:
metadata = {'title': content['title'], 'source': content['link']}
doc = Document(page_content=content['page_content'], metadata=metadata)
documents.append(doc)
except Exception as e:
print(f"Error processing content for {content['link']}: {e}")
# Initialize recursive text splitter
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
# Split documents
split_documents = text_splitter.split_documents(documents)
# Create vector store
vector_store = None
batch_size = 250 # Slightly less than 256 to be safe
for i in range(0, len(split_documents), batch_size):
batch = split_documents[i:i+batch_size]
if vector_store is None:
vector_store = FAISS.from_documents(batch, embedding_model)
else:
texts = [doc.page_content for doc in batch]
metadatas = [doc.metadata for doc in batch]
embeddings = embedding_model.embed_documents(texts)
vector_store.add_embeddings(
list(zip(texts, embeddings)),
metadatas
)
return vector_store