File size: 10,872 Bytes
45d16e9
8343ddd
45d16e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d737102
15554e1
45d16e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c94f705
45d16e9
c94f705
 
 
 
6ffc2df
c94f705
 
 
45d16e9
 
 
 
 
 
 
 
 
 
 
 
 
26986d2
45d16e9
 
 
 
26986d2
45d16e9
 
 
 
 
 
 
 
 
 
 
26986d2
45d16e9
 
26986d2
45d16e9
 
 
 
 
 
 
 
 
 
 
 
26986d2
45d16e9
 
26986d2
45d16e9
 
 
 
 
 
 
 
 
 
 
 
df5bd23
45d16e9
c753c37
4671ce0
45d16e9
 
 
 
 
9ed1764
1af558a
45d16e9
77710aa
9ed1764
8eaeb01
 
 
9ed1764
1af558a
 
 
 
77710aa
9ed1764
 
1af558a
8eaeb01
 
89361cc
8eaeb01
6370ed2
8eaeb01
 
 
9ed1764
45d16e9
8eaeb01
 
 
 
 
 
 
 
89361cc
 
 
 
 
 
 
 
 
 
 
 
 
26986d2
12c174c
26986d2
 
45d16e9
 
 
 
 
 
 
 
0e47c90
26986d2
45d16e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8eaeb01
 
45d16e9
 
 
 
12c174c
8eaeb01
 
 
 
c94f705
8eaeb01
 
 
 
 
 
 
 
 
89361cc
 
26986d2
45d16e9
 
 
 
 
8eaeb01
1af558a
45d16e9
8eaeb01
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
"""
Adapted from: https://github.com/Vision-CAIR/MiniGPT-4/blob/main/demo.py 
"""
import argparse
import os
import random

import numpy as np
import torch
import torch.backends.cudnn as cudnn
import gradio as gr

from video_llama.common.config import Config
from video_llama.common.dist_utils import get_rank
from video_llama.common.registry import registry
from video_llama.conversation.conversation_video import Chat, Conversation, default_conversation,SeparatorStyle
import decord
decord.bridge.set_bridge('torch')
 

#%%
# imports modules for registration
from video_llama.datasets.builders import *
from video_llama.models import *
from video_llama.processors import *
from video_llama.runners import *
from video_llama.tasks import *

#%%
def parse_args():
    parser = argparse.ArgumentParser(description="Demo")
    parser.add_argument("--cfg-path", default='eval_configs/video_llama_eval.yaml', help="path to configuration file.")
    parser.add_argument("--gpu-id", type=int, default=0, help="specify the gpu to load the model.")
    parser.add_argument(
        "--options",
        nargs="+",
        help="override some settings in the used config, the key-value pair "
        "in xxx=yyy format will be merged into config file (deprecate), "
        "change to --cfg-options instead.",
    )
    args = parser.parse_args()
    return args


def setup_seeds(config):
    seed = config.run_cfg.seed + get_rank()

    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)

    cudnn.benchmark = False
    cudnn.deterministic = True


# ========================================
#             Model Initialization
# ========================================

print('Initializing Chat')
args = parse_args()
cfg = Config(args)

model_config = cfg.model_cfg
model_config.device_8bit = args.gpu_id
model_cls = registry.get_model_class(model_config.arch)
model = model_cls.from_config(model_config).to('cuda:{}'.format(args.gpu_id))
model.eval()
vis_processor_cfg = cfg.datasets_cfg.webvid.vis_processor.train
vis_processor = registry.get_processor_class(vis_processor_cfg.name).from_config(vis_processor_cfg)
chat = Chat(model, vis_processor, device='cuda:{}'.format(args.gpu_id))
print('Initialization Finished')

# ========================================
#             Gradio Setting
# ========================================

def gradio_reset(chat_state, img_list):
    if chat_state is not None:
        chat_state.messages = []
    if img_list is not None:
        img_list = []
    return None, gr.update(value=None, interactive=True), gr.update(value=None, interactive=True), gr.update(placeholder='Please upload your video first', interactive=False),gr.update(value="Upload & Start Chat", interactive=True), chat_state, img_list

def upload_imgorvideo(gr_video, gr_img, text_input, chat_state,chatbot):
    if gr_img is None and gr_video is None:
        return None, None, None, gr.update(interactive=True), chat_state, None
    elif gr_img is not None and gr_video is None:
        print(gr_img)
        chatbot = chatbot + [((gr_img,), None)]
        chat_state = Conversation(
            system= "You are able to understand the visual content that the user provides."
           "Follow the instructions carefully and explain your answers in detail.",
            roles=("Human", "Assistant"),
            messages=[],
            offset=0,
            sep_style=SeparatorStyle.SINGLE,
            sep="###",
        )
        img_list = []
        llm_message = chat.upload_img(gr_img, chat_state, img_list)
        return gr.update(interactive=False), gr.update(interactive=False), gr.update(interactive=True, placeholder='Type and press Enter'), gr.update(value="Start Chatting", interactive=False), chat_state, img_list,chatbot
    elif gr_video is not None and gr_img is None:
        print(gr_video)
        chatbot = chatbot + [((gr_video,), None)]
        chat_state = default_conversation.copy()
        chat_state = Conversation(
            system= "You are able to understand the visual content that the user provides."
           "Follow the instructions carefully and explain your answers in detail.",
            roles=("Human", "Assistant"),
            messages=[],
            offset=0,
            sep_style=SeparatorStyle.SINGLE,
            sep="###",
        )
        img_list = []
        llm_message = chat.upload_video(gr_video, chat_state, img_list)
        return gr.update(interactive=False), gr.update(interactive=False), gr.update(interactive=True, placeholder='Type and press Enter'), gr.update(value="Start Chatting", interactive=False), chat_state, img_list,chatbot
    else:
        # img_list = []
        return gr.update(interactive=False), gr.update(interactive=False, placeholder='Currently, only one input is supported'), gr.update(value="Currently, only one input is supported", interactive=False), chat_state, None,chatbot

def gradio_ask(user_message, chatbot, chat_state):
    if len(user_message) == 0:
        return gr.update(interactive=True, placeholder='Input should not be empty!'), chatbot, chat_state
    chat.ask(user_message, chat_state)
    chatbot = chatbot + [[user_message, None]]
    return '', chatbot, chat_state


def gradio_answer(chatbot, chat_state, img_list, num_beams, temperature):
    llm_message = chat.answer(conv=chat_state,
                              img_list=img_list,
                              num_beams=1,
                              temperature=temperature,
                              max_new_tokens=240,
                              max_length=511)[0]
    chatbot[-1][1] = llm_message
    print(chat_state.get_prompt())
    print(chat_state)
    return chatbot, chat_state, img_list

title = """
<h1 align="center"><a href="https://github.com/DAMO-NLP-SG/Video-LLaMA"><img src="https://s1.ax1x.com/2023/05/22/p9oQ0FP.jpg", alt="Video-LLaMA" border="0" style="margin: 0 auto; height: 200px;" /></a> </h1>

<h1 align="center">Video-LLaMA: An Instruction-tuned Audio-Visual Language Model for Video Understanding</h1>

<h5 align="center">  Introduction: Video-LLaMA is a multi-model large language model that achieves video-grounded conversations between humans and computers \
    by connecting language decoder with off-the-shelf unimodal pre-trained models. </h5> 

<div style='display:flex; gap: 0.25rem; '>
<a href='https://github.com/DAMO-NLP-SG/Video-LLaMA'><img src='https://img.shields.io/badge/Github-Code-success'></a>
<a href='https://huggingface.co/spaces/DAMO-NLP-SG/Video-LLaMA'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue'></a> 
<a href='https://huggingface.co/DAMO-NLP-SG/Video-LLaMA-Series'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Model-blue'></a> 
<a href='https://modelscope.cn/studios/damo/video-llama/summary'><img src='https://img.shields.io/badge/ModelScope-Demo-blueviolet'></a> 
<a href='https://arxiv.org/abs/2306.02858'><img src='https://img.shields.io/badge/Paper-PDF-red'></a>
</div>


Thank you for using the Video-LLaMA Demo Page! If you have any questions or feedback, feel free to contact us. 

If you find Video-LLaMA interesting, please give us a star on GitHub.

Current online demo uses the 7B version of Video-LLaMA due to resource limitations. We have released \
         the 13B version on our GitHub repository.


"""

Note_markdown = ("""
### Note
Video-LLaMA is a prototype model and may have limitations in understanding complex scenes, long videos, or specific domains.
The output results may be influenced by input quality, limitations of the dataset, and the model's susceptibility to illusions. Please interpret the results with caution.

**Copyright 2023 Alibaba DAMO Academy.**
""")

cite_markdown = ("""
## Citation
If you find our project useful, hope you can star our repo and cite our paper as follows:
```
@article{damonlpsg2023videollama,
  author = {Zhang, Hang and Li, Xin and Bing, Lidong},
  title = {Video-LLaMA: An Instruction-tuned Audio-Visual Language Model for Video Understanding},
  year = 2023,
  journal = {arXiv preprint arXiv:2306.02858}
  url = {https://arxiv.org/abs/2306.02858}
}
""")

case_note_upload = ("""
### We provide some examples at the bottom of the page. Simply click on them to try them out directly.
""")

#TODO show examples below

with gr.Blocks() as demo:
    gr.Markdown(title)

    with gr.Row():
        with gr.Column(scale=0.5):
            video = gr.Video()
            image = gr.Image(type="filepath")
            gr.Markdown(case_note_upload)

            upload_button = gr.Button(value="Upload & Start Chat", interactive=True, variant="primary")
            clear = gr.Button("Restart")
            
            num_beams = gr.Slider(
                minimum=1,
                maximum=10,
                value=1,
                step=1,
                interactive=True,
                label="beam search numbers)",
            )
            
            temperature = gr.Slider(
                minimum=0.1,
                maximum=2.0,
                value=1.0,
                step=0.1,
                interactive=True,
                label="Temperature",
            )

            audio = gr.Checkbox(interactive=True, value=False, label="Audio")
            gr.Markdown(Note_markdown)
        with gr.Column():
            chat_state = gr.State()
            img_list = gr.State()
            chatbot = gr.Chatbot(label='Video-LLaMA')
            text_input = gr.Textbox(label='User', placeholder='Upload your image/video first, or directly click the examples at the bottom of the page.', interactive=False)
            

    with gr.Column():
        gr.Examples(examples=[
            [f"examples/dog.jpg", "Which breed is this dog? "],
            [f"examples/jonsnow.jpg", "Who's the man on the right? "],
            [f"examples/statue_of_liberty.jpg", "Can you tell me about this building? "],
        ], inputs=[image, text_input])

        gr.Examples(examples=[
            [f"examples/skateboarding_dog.mp4", "What is the dog doing? "],
            [f"examples/birthday.mp4", "What is the boy doing? "],
            [f"examples/Iron_Man.mp4", "Is the guy in the video Iron Man? "],
        ], inputs=[video, text_input])
        
    gr.Markdown(cite_markdown)
    upload_button.click(upload_imgorvideo, [video, image, text_input, chat_state,chatbot], [video, image, text_input, upload_button, chat_state, img_list,chatbot])
    
    text_input.submit(gradio_ask, [text_input, chatbot, chat_state], [text_input, chatbot, chat_state]).then(
        gradio_answer, [chatbot, chat_state, img_list, num_beams, temperature], [chatbot, chat_state, img_list]
    )
    clear.click(gradio_reset, [chat_state, img_list], [chatbot, video, image, text_input, upload_button, chat_state, img_list], queue=False)
    
demo.launch(share=False, enable_queue=True)

# %%