Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import random | |
import spaces | |
import gradio as gr | |
import torch | |
from diffusers.utils import load_image | |
from diffusers.pipelines.flux.pipeline_flux_controlnet import FluxControlNetPipeline | |
from diffusers.models.controlnet_flux import FluxControlNetModel | |
import numpy as np | |
from huggingface_hub import login, snapshot_download | |
# Configuration | |
BASE_MODEL = 'black-forest-labs/FLUX.1-dev' | |
CONTROLNET_MODEL = 'promeai/FLUX.1-controlnet-lineart-promeai' | |
CSS = """ | |
#col-container { | |
margin: 0 auto; | |
max-width: 640px; | |
} | |
""" | |
# Setup | |
AUTH_TOKEN = os.getenv("HF_AUTH_TOKEN") | |
if AUTH_TOKEN: | |
login(AUTH_TOKEN) | |
else: | |
raise ValueError("Hugging Face auth token not found. Please set HF_AUTH_TOKEN in the environment.") | |
MODEL_DIR = snapshot_download( | |
repo_id=BASE_MODEL, | |
revision="main", | |
use_auth_token=AUTH_TOKEN | |
) | |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu" | |
TORCH_DTYPE = torch.bfloat16 if torch.cuda.is_available() else torch.float32 | |
CONTROLNET = FluxControlNetModel.from_pretrained(CONTROLNET_MODEL, torch_dtype=TORCH_DTYPE) | |
PIPE = FluxControlNetPipeline.from_pretrained(MODEL_DIR, controlnet=CONTROLNET, torch_dtype=TORCH_DTYPE) | |
torch.cuda.empty_cache() | |
PIPE = PIPE.to(DEVICE) | |
MAX_SEED = np.iinfo(np.int32).max | |
def infer( | |
prompt, | |
control_image_path, | |
controlnet_conditioning_scale, | |
guidance_scale, | |
num_inference_steps, | |
seed, | |
randomize_seed, | |
): | |
global DEVICE, TORCH_DTYPE | |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu" | |
TORCH_DTYPE = torch.bfloat16 if torch.cuda.is_available() else torch.float32 | |
print(f"Inference: using device: {DEVICE} (torch_dtype={TORCH_DTYPE})") | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
generator = torch.manual_seed(seed) | |
control_image = load_image(control_image_path) if control_image_path else None | |
# Generate image | |
result = PIPE( | |
prompt=prompt, | |
control_image=control_image, | |
controlnet_conditioning_scale=controlnet_conditioning_scale, | |
num_inference_steps=num_inference_steps, | |
guidance_scale=guidance_scale, | |
generator=generator, | |
).images[0] | |
return result, seed | |
with gr.Blocks(css=CSS) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown("# Flux.1[dev] LineArt") | |
gr.Markdown("### Zero-shot Partial Style Transfer for Line Art Images, Powered by FLUX.1") | |
control_image = gr.Image( | |
sources=['upload', 'webcam', 'clipboard'], | |
type="filepath", | |
label="Control Image (LineArt)" | |
) | |
prompt = gr.Text( | |
label="Prompt", | |
placeholder="Enter your prompt", | |
max_lines=1, | |
container=False | |
) | |
run_button = gr.Button("Generate", variant="primary") | |
result = gr.Image(label="Result", show_label=False) | |
with gr.Accordion("Advanced Settings", open=False): | |
controlnet_conditioning_scale = gr.Slider( | |
label="ControlNet Conditioning Scale", | |
minimum=0.0, | |
maximum=1.0, | |
value=0.6, | |
step=0.1 | |
) | |
guidance_scale = gr.Slider( | |
label="Guidance Scale", | |
minimum=1.0, | |
maximum=10.0, | |
value=3.5, | |
step=0.1 | |
) | |
num_inference_steps = gr.Slider( | |
label="Number of Inference Steps", | |
minimum=1, | |
maximum=100, | |
value=28, | |
step=1 | |
) | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0 | |
) | |
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True) | |
gr.Examples( | |
examples=[ | |
"Shiba Inu wearing dinosaur costume riding skateboard", | |
"Victorian style mansion interior with candlelight", | |
"Loading screen for Grand Theft Otter: Clam Andreas" | |
], | |
inputs=[prompt] | |
) | |
gr.on( | |
triggers=[run_button.click, prompt.submit], | |
fn = infer, | |
inputs=[ | |
prompt, | |
control_image, | |
controlnet_conditioning_scale, | |
guidance_scale, | |
num_inference_steps, | |
seed, | |
randomize_seed | |
], | |
outputs = [result, seed] | |
) | |
if __name__ == "__main__": | |
demo.launch() |