Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse filesFix gated repo issue with Flux
app.py
CHANGED
@@ -1,24 +1,42 @@
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
from diffusers.utils import load_image
|
4 |
from diffusers.pipelines.flux.pipeline_flux_controlnet import FluxControlNetPipeline
|
5 |
from diffusers.models.controlnet_flux import FluxControlNetModel
|
6 |
-
import random
|
7 |
import numpy as np
|
|
|
8 |
|
9 |
-
|
10 |
-
from huggingface_hub import login
|
11 |
-
|
12 |
-
login(os.getenv("hfapikey"))
|
13 |
-
|
14 |
-
# Initialize models
|
15 |
base_model = 'black-forest-labs/FLUX.1-dev'
|
16 |
controlnet_model = 'promeai/FLUX.1-controlnet-lineart-promeai'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
18 |
torch_dtype = torch.bfloat16 if torch.cuda.is_available() else torch.float32
|
|
|
19 |
|
20 |
controlnet = FluxControlNetModel.from_pretrained(controlnet_model, torch_dtype=torch_dtype)
|
21 |
-
pipe = FluxControlNetPipeline.from_pretrained(
|
22 |
pipe = pipe.to(device)
|
23 |
|
24 |
MAX_SEED = np.iinfo(np.int32).max
|
@@ -50,31 +68,23 @@ def infer(
|
|
50 |
|
51 |
return result, seed
|
52 |
|
53 |
-
css = """
|
54 |
-
#col-container {
|
55 |
-
margin: 0 auto;
|
56 |
-
max-width: 640px;
|
57 |
-
}
|
58 |
-
"""
|
59 |
-
|
60 |
with gr.Blocks(css=css) as demo:
|
61 |
with gr.Column(elem_id="col-container"):
|
62 |
-
gr.Markdown("
|
63 |
-
|
64 |
-
|
65 |
-
prompt = gr.Textbox(
|
66 |
-
label="Prompt",
|
67 |
-
placeholder="Enter your prompt",
|
68 |
-
max_lines=1,
|
69 |
-
)
|
70 |
-
run_button = gr.Button("Generate", variant="primary")
|
71 |
-
|
72 |
-
with gr.Accordion("Advanced Settings", open=True):
|
73 |
-
control_image = gr.Image(
|
74 |
sources=['upload', 'webcam', 'clipboard'],
|
75 |
type="filepath",
|
76 |
-
label="Control Image (
|
77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
controlnet_conditioning_scale = gr.Slider(
|
79 |
label="ControlNet Conditioning Scale",
|
80 |
minimum=0.0,
|
@@ -105,9 +115,6 @@ with gr.Blocks(css=css) as demo:
|
|
105 |
)
|
106 |
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
|
107 |
|
108 |
-
|
109 |
-
result = gr.Image(label="Result", show_label=False)
|
110 |
-
|
111 |
gr.Examples(
|
112 |
examples=[
|
113 |
"Shiba Inu wearing dinosaur costume riding skateboard",
|
|
|
1 |
+
import os
|
2 |
+
import random
|
3 |
import gradio as gr
|
4 |
import torch
|
5 |
from diffusers.utils import load_image
|
6 |
from diffusers.pipelines.flux.pipeline_flux_controlnet import FluxControlNetPipeline
|
7 |
from diffusers.models.controlnet_flux import FluxControlNetModel
|
|
|
8 |
import numpy as np
|
9 |
+
from huggingface_hub import login, snapshot_download
|
10 |
|
11 |
+
# Configuration
|
|
|
|
|
|
|
|
|
|
|
12 |
base_model = 'black-forest-labs/FLUX.1-dev'
|
13 |
controlnet_model = 'promeai/FLUX.1-controlnet-lineart-promeai'
|
14 |
+
css = """
|
15 |
+
#col-container {
|
16 |
+
margin: 0 auto;
|
17 |
+
max-width: 640px;
|
18 |
+
}
|
19 |
+
"""
|
20 |
+
|
21 |
+
# Setup
|
22 |
+
auth_token = os.getenv("HF_AUTH_TOKEN")
|
23 |
+
if not auth_token:
|
24 |
+
raise ValueError("Hugging Face auth token not found. Please set HF_AUTH_TOKEN in the environment.")
|
25 |
+
|
26 |
+
login(auth_token)
|
27 |
+
|
28 |
+
model_dir = snapshot_download(
|
29 |
+
repo_id=base_model,
|
30 |
+
revision="main",
|
31 |
+
use_auth_token=auth_token
|
32 |
+
)
|
33 |
+
|
34 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
35 |
torch_dtype = torch.bfloat16 if torch.cuda.is_available() else torch.float32
|
36 |
+
print(f"Using device: {device} (torch_dtype={torch_dtype})")
|
37 |
|
38 |
controlnet = FluxControlNetModel.from_pretrained(controlnet_model, torch_dtype=torch_dtype)
|
39 |
+
pipe = FluxControlNetPipeline.from_pretrained(model_dir, controlnet=controlnet, torch_dtype=torch_dtype)
|
40 |
pipe = pipe.to(device)
|
41 |
|
42 |
MAX_SEED = np.iinfo(np.int32).max
|
|
|
68 |
|
69 |
return result, seed
|
70 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
with gr.Blocks(css=css) as demo:
|
72 |
with gr.Column(elem_id="col-container"):
|
73 |
+
gr.Markdown("Flux.1[dev] LineArt")
|
74 |
+
gr.Markdown("### Zero-shot Partial Style Transfer for Line Art Images, Powered by FLUX.1")
|
75 |
+
control_image = gr.Image(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
sources=['upload', 'webcam', 'clipboard'],
|
77 |
type="filepath",
|
78 |
+
label="Control Image (LineArt)"
|
79 |
+
)
|
80 |
+
prompt = gr.Textbox(
|
81 |
+
label="Prompt",
|
82 |
+
placeholder="Enter your prompt",
|
83 |
+
max_lines=1,
|
84 |
+
)
|
85 |
+
run_button = gr.Button("Generate", variant="primary")
|
86 |
+
result = gr.Image(label="Result", show_label=False)
|
87 |
+
with gr.Accordion("Advanced Settings", open=False):
|
88 |
controlnet_conditioning_scale = gr.Slider(
|
89 |
label="ControlNet Conditioning Scale",
|
90 |
minimum=0.0,
|
|
|
115 |
)
|
116 |
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
|
117 |
|
|
|
|
|
|
|
118 |
gr.Examples(
|
119 |
examples=[
|
120 |
"Shiba Inu wearing dinosaur costume riding skateboard",
|