DjStompzone commited on
Commit
f0a89f2
·
verified ·
1 Parent(s): e3dae3e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +71 -97
app.py CHANGED
@@ -1,61 +1,49 @@
1
  import gradio as gr
2
- import numpy as np
3
- import random
4
-
5
- # import spaces #[uncomment to use ZeroGPU]
6
- from diffusers import DiffusionPipeline
7
  import torch
 
 
 
 
 
8
 
 
 
 
9
  device = "cuda" if torch.cuda.is_available() else "cpu"
10
- model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use
11
-
12
- if torch.cuda.is_available():
13
- torch_dtype = torch.float16
14
- else:
15
- torch_dtype = torch.float32
16
 
17
- pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
 
18
  pipe = pipe.to(device)
19
 
20
  MAX_SEED = np.iinfo(np.int32).max
21
- MAX_IMAGE_SIZE = 1024
22
 
23
-
24
- # @spaces.GPU #[uncomment to use ZeroGPU]
25
  def infer(
26
  prompt,
27
- negative_prompt,
28
- seed,
29
- randomize_seed,
30
- width,
31
- height,
32
  guidance_scale,
33
  num_inference_steps,
34
- progress=gr.Progress(track_tqdm=True),
 
35
  ):
36
  if randomize_seed:
37
  seed = random.randint(0, MAX_SEED)
38
 
39
- generator = torch.Generator().manual_seed(seed)
 
40
 
41
- image = pipe(
 
42
  prompt=prompt,
43
- negative_prompt=negative_prompt,
44
- guidance_scale=guidance_scale,
45
  num_inference_steps=num_inference_steps,
46
- width=width,
47
- height=height,
48
  generator=generator,
49
  ).images[0]
50
 
51
- return image, seed
52
-
53
-
54
- examples = [
55
- "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
56
- "An astronaut riding a green horse",
57
- "A delicious ceviche cheesecake slice",
58
- ]
59
 
60
  css = """
61
  #col-container {
@@ -66,89 +54,75 @@ css = """
66
 
67
  with gr.Blocks(css=css) as demo:
68
  with gr.Column(elem_id="col-container"):
69
- gr.Markdown(" # Text-to-Image Gradio Template")
70
 
71
  with gr.Row():
72
- prompt = gr.Text(
73
  label="Prompt",
74
- show_label=False,
75
- max_lines=1,
76
  placeholder="Enter your prompt",
77
- container=False,
78
  )
79
-
80
- run_button = gr.Button("Run", scale=0, variant="primary")
81
 
82
  result = gr.Image(label="Result", show_label=False)
83
 
84
  with gr.Accordion("Advanced Settings", open=False):
85
- negative_prompt = gr.Text(
86
- label="Negative prompt",
87
- max_lines=1,
88
- placeholder="Enter a negative prompt",
89
- visible=False,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90
  )
91
-
92
  seed = gr.Slider(
93
  label="Seed",
94
  minimum=0,
95
  maximum=MAX_SEED,
96
  step=1,
97
- value=0,
98
  )
99
-
100
- randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
101
-
102
- with gr.Row():
103
- width = gr.Slider(
104
- label="Width",
105
- minimum=256,
106
- maximum=MAX_IMAGE_SIZE,
107
- step=32,
108
- value=1024, # Replace with defaults that work for your model
109
- )
110
-
111
- height = gr.Slider(
112
- label="Height",
113
- minimum=256,
114
- maximum=MAX_IMAGE_SIZE,
115
- step=32,
116
- value=1024, # Replace with defaults that work for your model
117
- )
118
-
119
- with gr.Row():
120
- guidance_scale = gr.Slider(
121
- label="Guidance scale",
122
- minimum=0.0,
123
- maximum=10.0,
124
- step=0.1,
125
- value=0.0, # Replace with defaults that work for your model
126
- )
127
-
128
- num_inference_steps = gr.Slider(
129
- label="Number of inference steps",
130
- minimum=1,
131
- maximum=50,
132
- step=1,
133
- value=2, # Replace with defaults that work for your model
134
- )
135
-
136
- gr.Examples(examples=examples, inputs=[prompt])
137
- gr.on(
138
- triggers=[run_button.click, prompt.submit],
139
- fn=infer,
140
  inputs=[
141
  prompt,
142
- negative_prompt,
143
- seed,
144
- randomize_seed,
145
- width,
146
- height,
147
  guidance_scale,
148
  num_inference_steps,
 
 
149
  ],
150
- outputs=[result, seed],
151
  )
152
 
153
  if __name__ == "__main__":
154
- demo.launch()
 
1
  import gradio as gr
 
 
 
 
 
2
  import torch
3
+ from diffusers.utils import load_image
4
+ from diffusers.pipelines.flux.pipeline_flux_controlnet import FluxControlNetPipeline
5
+ from diffusers.models.controlnet_flux import FluxControlNetModel
6
+ import random
7
+ import numpy as np
8
 
9
+ # Initialize models
10
+ base_model = 'black-forest-labs/FLUX.1-dev'
11
+ controlnet_model = 'promeai/FLUX.1-controlnet-lineart-promeai'
12
  device = "cuda" if torch.cuda.is_available() else "cpu"
13
+ torch_dtype = torch.bfloat16 if torch.cuda.is_available() else torch.float32
 
 
 
 
 
14
 
15
+ controlnet = FluxControlNetModel.from_pretrained(controlnet_model, torch_dtype=torch_dtype)
16
+ pipe = FluxControlNetPipeline.from_pretrained(base_model, controlnet=controlnet, torch_dtype=torch_dtype)
17
  pipe = pipe.to(device)
18
 
19
  MAX_SEED = np.iinfo(np.int32).max
 
20
 
 
 
21
  def infer(
22
  prompt,
23
+ control_image_path,
24
+ controlnet_conditioning_scale,
 
 
 
25
  guidance_scale,
26
  num_inference_steps,
27
+ seed,
28
+ randomize_seed,
29
  ):
30
  if randomize_seed:
31
  seed = random.randint(0, MAX_SEED)
32
 
33
+ generator = torch.manual_seed(seed)
34
+ control_image = load_image(control_image_path) if control_image_path else None
35
 
36
+ # Generate image
37
+ result = pipe(
38
  prompt=prompt,
39
+ control_image=control_image,
40
+ controlnet_conditioning_scale=controlnet_conditioning_scale,
41
  num_inference_steps=num_inference_steps,
42
+ guidance_scale=guidance_scale,
 
43
  generator=generator,
44
  ).images[0]
45
 
46
+ return result, seed
 
 
 
 
 
 
 
47
 
48
  css = """
49
  #col-container {
 
54
 
55
  with gr.Blocks(css=css) as demo:
56
  with gr.Column(elem_id="col-container"):
57
+ gr.Markdown("## Zero-shot Partial Style Transfer for Line Art Images, Powered by FLUX.1")
58
 
59
  with gr.Row():
60
+ prompt = gr.Textbox(
61
  label="Prompt",
 
 
62
  placeholder="Enter your prompt",
63
+ max_lines=1,
64
  )
65
+ run_button = gr.Button("Generate", variant="primary")
 
66
 
67
  result = gr.Image(label="Result", show_label=False)
68
 
69
  with gr.Accordion("Advanced Settings", open=False):
70
+ control_image = gr.Image(
71
+ source="upload",
72
+ type="filepath",
73
+ label="Control Image (Line Art)"
74
+ )
75
+ controlnet_conditioning_scale = gr.Slider(
76
+ label="ControlNet Conditioning Scale",
77
+ minimum=0.0,
78
+ maximum=1.0,
79
+ value=0.6,
80
+ step=0.1
81
+ )
82
+ guidance_scale = gr.Slider(
83
+ label="Guidance Scale",
84
+ minimum=1.0,
85
+ maximum=10.0,
86
+ value=3.5,
87
+ step=0.1
88
+ )
89
+ num_inference_steps = gr.Slider(
90
+ label="Number of Inference Steps",
91
+ minimum=1,
92
+ maximum=100,
93
+ value=28,
94
+ step=1
95
  )
 
96
  seed = gr.Slider(
97
  label="Seed",
98
  minimum=0,
99
  maximum=MAX_SEED,
100
  step=1,
101
+ value=0
102
  )
103
+ randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
104
+
105
+ gr.Examples(
106
+ examples=[
107
+ "Anime girl with fennec ears holding a cake",
108
+ "Victorian style mansion interior with candlelight"
109
+ ],
110
+ inputs=[prompt]
111
+ )
112
+
113
+ run_button.click(
114
+ infer,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
115
  inputs=[
116
  prompt,
117
+ control_image,
118
+ controlnet_conditioning_scale,
 
 
 
119
  guidance_scale,
120
  num_inference_steps,
121
+ seed,
122
+ randomize_seed
123
  ],
124
+ outputs=[result, seed]
125
  )
126
 
127
  if __name__ == "__main__":
128
+ demo.launch()