TransGPT / app.py
iKING-ROC's picture
Update app.py
a7d13e5
import argparse
import os
import gradio as gr
import mdtex2html
from gradio.themes.utils import colors, fonts, sizes
import torch
from peft import PeftModel
from transformers import (
AutoModel,
AutoTokenizer,
AutoModelForCausalLM,
BloomForCausalLM,
BloomTokenizerFast,
LlamaTokenizer,
LlamaForCausalLM,
GenerationConfig,
)
MODEL_CLASSES = {
"bloom": (BloomForCausalLM, BloomTokenizerFast),
"chatglm": (AutoModel, AutoTokenizer),
"llama": (LlamaForCausalLM, LlamaTokenizer),
"auto": (AutoModelForCausalLM, AutoTokenizer),
}
class OpenGVLab(gr.themes.base.Base):
def __init__(
self,
*,
primary_hue=colors.blue,
secondary_hue=colors.sky,
neutral_hue=colors.gray,
spacing_size=sizes.spacing_md,
radius_size=sizes.radius_sm,
text_size=sizes.text_md,
font=(
fonts.GoogleFont("Noto Sans"),
"ui-sans-serif",
"sans-serif",
),
font_mono=(
fonts.GoogleFont("IBM Plex Mono"),
"ui-monospace",
"monospace",
),
):
super().__init__(
primary_hue=primary_hue,
secondary_hue=secondary_hue,
neutral_hue=neutral_hue,
spacing_size=spacing_size,
radius_size=radius_size,
text_size=text_size,
font=font,
font_mono=font_mono,
)
super().set(
body_background_fill="*neutral_50",
)
gvlabtheme = OpenGVLab(primary_hue=colors.blue,
secondary_hue=colors.sky,
neutral_hue=colors.gray,
spacing_size=sizes.spacing_md,
radius_size=sizes.radius_sm,
text_size=sizes.text_md,
)
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--model_type', default="llama", type=str)
parser.add_argument('--base_model', default="DUOMO-Lab/TransGPT-v0", type=str)
parser.add_argument('--lora_model', default="", type=str, help="If None, perform inference on the base model")
parser.add_argument('--tokenizer_path', default=None, type=str)
parser.add_argument('--gpus', default="0", type=str)
parser.add_argument('--only_cpu', action='store_true', help='only use CPU for inference')
parser.add_argument('--resize_emb', action='store_true', help='Whether to resize model token embeddings')
args = parser.parse_args()
if args.only_cpu is True:
args.gpus = ""
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpus
def postprocess(self, y):
if y is None:
return []
for i, (message, response) in enumerate(y):
y[i] = (
None if message is None else mdtex2html.convert((message)),
None if response is None else mdtex2html.convert(response),
)
return y
gr.Chatbot.postprocess = postprocess
generation_config = dict(
temperature=0.2,
top_k=40,
top_p=0.9,
do_sample=True,
num_beams=1,
repetition_penalty=1.1,
max_new_tokens=400
)
load_type = torch.float16
if torch.cuda.is_available():
device = torch.device(0)
else:
device = torch.device('cpu')
if args.tokenizer_path is None:
args.tokenizer_path = args.base_model
model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
tokenizer = tokenizer_class.from_pretrained(args.tokenizer_path, trust_remote_code=True)
base_model = model_class.from_pretrained(
args.base_model,
load_in_8bit=False,
torch_dtype=load_type,
low_cpu_mem_usage=True,
device_map='auto',
trust_remote_code=True,
)
if args.resize_emb:
model_vocab_size = base_model.get_input_embeddings().weight.size(0)
tokenzier_vocab_size = len(tokenizer)
print(f"Vocab of the base model: {model_vocab_size}")
print(f"Vocab of the tokenizer: {tokenzier_vocab_size}")
if model_vocab_size != tokenzier_vocab_size:
print("Resize model embeddings to fit tokenizer")
base_model.resize_token_embeddings(tokenzier_vocab_size)
if args.lora_model:
model = PeftModel.from_pretrained(base_model, args.lora_model, torch_dtype=load_type, device_map='auto')
print("loaded lora model")
else:
model = base_model
if device == torch.device('cpu'):
model.float()
model.eval()
def reset_user_input():
return gr.update(value='')
def reset_state():
return [], []
def generate_prompt(instruction):
return f"""You are TransGPT, a specialist in the field of transportation.Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
{instruction}
### Response: """
def predict(
input,
chatbot,
history,
max_new_tokens=128,
top_p=0.75,
temperature=0.1,
top_k=40,
num_beams=4,
repetition_penalty=1.0,
max_memory=256,
**kwargs,
):
now_input = input
chatbot.append((input, ""))
history = history or []
if len(history) != 0:
input = "".join(
["### Instruction:\n" + i[0] + "\n\n" + "### Response: " + i[1] + "\n\n" for i in history]) + \
"### Instruction:\n" + input
input = input[len("### Instruction:\n"):]
if len(input) > max_memory:
input = input[-max_memory:]
prompt = generate_prompt(input)
inputs = tokenizer(prompt, return_tensors="pt")
input_ids = inputs["input_ids"].to(device)
generation_config = GenerationConfig(
temperature=temperature,
top_p=top_p,
top_k=top_k,
num_beams=num_beams,
**kwargs,
)
with torch.no_grad():
generation_output = model.generate(
input_ids=input_ids,
generation_config=generation_config,
return_dict_in_generate=True,
output_scores=False,
max_new_tokens=max_new_tokens,
repetition_penalty=float(repetition_penalty),
)
s = generation_output.sequences[0]
output = tokenizer.decode(s, skip_special_tokens=True)
output = output.split("### Response:")[-1].strip()
history.append((now_input, output))
chatbot[-1] = (now_input, output)
return chatbot, history
title = """<h1 align="center">Welcome to TransGPT!"""
with gr.Blocks(title="DUOMO TransGPT!", theme=gvlabtheme,
css="#chatbot {overflow:auto; height:500px;} #InputVideo {overflow:visible; height:320px;} footer {visibility: none}") as demo:
gr.Markdown(title)
chatbot = gr.Chatbot()
with gr.Row():
with gr.Column(scale=4):
with gr.Column(scale=12):
user_input = gr.Textbox(show_label=False, placeholder="Input...", lines=10).style(
container=False)
with gr.Column(min_width=32, scale=1):
submitBtn = gr.Button("Submit", variant="primary")
with gr.Column(scale=1):
emptyBtn = gr.Button("Clear History")
max_length = gr.Slider(
0, 4096, value=128, step=1.0, label="Maximum length", interactive=True)
top_p = gr.Slider(0, 1, value=0.8, step=0.01,
label="Top P", interactive=True)
temperature = gr.Slider(
0, 1, value=0.7, step=0.01, label="Temperature", interactive=True)
history = gr.State([]) # (message, bot_message)
submitBtn.click(predict, [user_input, chatbot, history, max_length, top_p, temperature], [chatbot, history],
show_progress=True)
submitBtn.click(reset_user_input, [], [user_input])
emptyBtn.click(reset_state, outputs=[chatbot, history], show_progress=True)
demo.queue().launch()
if __name__ == '__main__':
main()