Commit
·
faf4ba4
1
Parent(s):
9bcdb59
added suggestion from user + work on the progressive loader
Browse files- .env +3 -0
- src/app/engine/render.ts +4 -0
- src/app/interface/settings-dialog/defaultSettings.ts +1 -0
- src/app/interface/settings-dialog/getSettings.ts +1 -0
- src/app/interface/settings-dialog/index.tsx +15 -0
- src/app/interface/settings-dialog/localStorageKeys.ts +1 -0
- src/app/main.tsx +65 -53
- src/app/queries/getStory.ts +13 -13
- src/app/queries/getStoryContinuation.ts +53 -81
- src/app/queries/mockLLMResponse.ts +2 -2
- src/app/queries/predictNextPanels.ts +95 -0
- src/lib/cleanJson.ts +1 -1
- src/lib/{dirtyCaptionCleaner.ts → dirtyGeneratedPanelCleaner.ts} +6 -8
- src/lib/{dirtyLLMJsonParser.ts → dirtyGeneratedPanelsParser.ts} +3 -3
- src/lib/dirtyLLMResponseCleaner.ts +1 -1
- src/lib/parseBadJSON.ts +4 -4
- src/types.ts +8 -1
.env
CHANGED
@@ -53,6 +53,9 @@ RENDERING_HF_INFERENCE_API_BASE_MODEL="stabilityai/stable-diffusion-xl-base-1.0"
|
|
53 |
# If you decided to use a Hugging Face Inference API model for the RENDERING engine
|
54 |
RENDERING_HF_INFERENCE_API_REFINER_MODEL="stabilityai/stable-diffusion-xl-refiner-1.0"
|
55 |
|
|
|
|
|
|
|
56 |
# An experimental RENDERING engine (sorry it is not very documented yet, so you can use one of the other engines)
|
57 |
RENDERING_VIDEOCHAIN_API_URL="http://localhost:7860"
|
58 |
|
|
|
53 |
# If you decided to use a Hugging Face Inference API model for the RENDERING engine
|
54 |
RENDERING_HF_INFERENCE_API_REFINER_MODEL="stabilityai/stable-diffusion-xl-refiner-1.0"
|
55 |
|
56 |
+
# If your model returns a different file type (eg. jpg or webp) change it here
|
57 |
+
RENDERING_HF_INFERENCE_API_FILE_TYPE="image/png"
|
58 |
+
|
59 |
# An experimental RENDERING engine (sorry it is not very documented yet, so you can use one of the other engines)
|
60 |
RENDERING_VIDEOCHAIN_API_URL="http://localhost:7860"
|
61 |
|
src/app/engine/render.ts
CHANGED
@@ -15,6 +15,7 @@ const serverHuggingfaceApiUrl = `${process.env.RENDERING_HF_INFERENCE_ENDPOINT_U
|
|
15 |
const serverHuggingfaceInferenceApiModel = `${process.env.RENDERING_HF_INFERENCE_API_BASE_MODEL || ""}`
|
16 |
const serverHuggingfaceInferenceApiModelRefinerModel = `${process.env.RENDERING_HF_INFERENCE_API_REFINER_MODEL || ""}`
|
17 |
const serverHuggingfaceInferenceApiModelTrigger = `${process.env.RENDERING_HF_INFERENCE_API_MODEL_TRIGGER || ""}`
|
|
|
18 |
|
19 |
const serverReplicateApiKey = `${process.env.AUTH_REPLICATE_API_TOKEN || ""}`
|
20 |
const serverReplicateApiModel = `${process.env.RENDERING_REPLICATE_API_MODEL || ""}`
|
@@ -77,6 +78,7 @@ export async function newRender({
|
|
77 |
let huggingfaceApiUrl = serverHuggingfaceApiUrl
|
78 |
let huggingfaceInferenceApiModelRefinerModel = serverHuggingfaceInferenceApiModelRefinerModel
|
79 |
let huggingfaceInferenceApiModelTrigger = serverHuggingfaceInferenceApiModelTrigger
|
|
|
80 |
|
81 |
const placeholder = "<USE YOUR OWN TOKEN>"
|
82 |
|
@@ -116,6 +118,7 @@ export async function newRender({
|
|
116 |
huggingfaceApiKey = settings.huggingfaceApiKey
|
117 |
huggingfaceInferenceApiModel = settings.huggingfaceInferenceApiModel
|
118 |
huggingfaceInferenceApiModelTrigger = settings.huggingfaceInferenceApiModelTrigger
|
|
|
119 |
}
|
120 |
|
121 |
try {
|
@@ -258,6 +261,7 @@ export async function newRender({
|
|
258 |
method: "POST",
|
259 |
headers: {
|
260 |
"Content-Type": "application/json",
|
|
|
261 |
Authorization: `Bearer ${huggingfaceApiKey}`,
|
262 |
},
|
263 |
body: JSON.stringify({
|
|
|
15 |
const serverHuggingfaceInferenceApiModel = `${process.env.RENDERING_HF_INFERENCE_API_BASE_MODEL || ""}`
|
16 |
const serverHuggingfaceInferenceApiModelRefinerModel = `${process.env.RENDERING_HF_INFERENCE_API_REFINER_MODEL || ""}`
|
17 |
const serverHuggingfaceInferenceApiModelTrigger = `${process.env.RENDERING_HF_INFERENCE_API_MODEL_TRIGGER || ""}`
|
18 |
+
const serverHuggingfaceInferenceApiFileType = `${process.env.RENDERING_HF_INFERENCE_API_FILE_TYPE || ""}`
|
19 |
|
20 |
const serverReplicateApiKey = `${process.env.AUTH_REPLICATE_API_TOKEN || ""}`
|
21 |
const serverReplicateApiModel = `${process.env.RENDERING_REPLICATE_API_MODEL || ""}`
|
|
|
78 |
let huggingfaceApiUrl = serverHuggingfaceApiUrl
|
79 |
let huggingfaceInferenceApiModelRefinerModel = serverHuggingfaceInferenceApiModelRefinerModel
|
80 |
let huggingfaceInferenceApiModelTrigger = serverHuggingfaceInferenceApiModelTrigger
|
81 |
+
let huggingfaceInferenceApiFileType = serverHuggingfaceInferenceApiFileType
|
82 |
|
83 |
const placeholder = "<USE YOUR OWN TOKEN>"
|
84 |
|
|
|
118 |
huggingfaceApiKey = settings.huggingfaceApiKey
|
119 |
huggingfaceInferenceApiModel = settings.huggingfaceInferenceApiModel
|
120 |
huggingfaceInferenceApiModelTrigger = settings.huggingfaceInferenceApiModelTrigger
|
121 |
+
huggingfaceInferenceApiFileType = settings.huggingfaceInferenceApiFileType
|
122 |
}
|
123 |
|
124 |
try {
|
|
|
261 |
method: "POST",
|
262 |
headers: {
|
263 |
"Content-Type": "application/json",
|
264 |
+
Accept: huggingfaceInferenceApiFileType,
|
265 |
Authorization: `Bearer ${huggingfaceApiKey}`,
|
266 |
},
|
267 |
body: JSON.stringify({
|
src/app/interface/settings-dialog/defaultSettings.ts
CHANGED
@@ -6,6 +6,7 @@ export const defaultSettings: Settings = {
|
|
6 |
huggingfaceApiKey: "",
|
7 |
huggingfaceInferenceApiModel: "stabilityai/stable-diffusion-xl-base-1.0",
|
8 |
huggingfaceInferenceApiModelTrigger: "",
|
|
|
9 |
replicateApiKey: "",
|
10 |
replicateApiModel: "stabilityai/sdxl",
|
11 |
replicateApiModelVersion: "da77bc59ee60423279fd632efb4795ab731d9e3ca9705ef3341091fb989b7eaf",
|
|
|
6 |
huggingfaceApiKey: "",
|
7 |
huggingfaceInferenceApiModel: "stabilityai/stable-diffusion-xl-base-1.0",
|
8 |
huggingfaceInferenceApiModelTrigger: "",
|
9 |
+
huggingfaceInferenceApiFileType: "image/png",
|
10 |
replicateApiKey: "",
|
11 |
replicateApiModel: "stabilityai/sdxl",
|
12 |
replicateApiModelVersion: "da77bc59ee60423279fd632efb4795ab731d9e3ca9705ef3341091fb989b7eaf",
|
src/app/interface/settings-dialog/getSettings.ts
CHANGED
@@ -13,6 +13,7 @@ export function getSettings(): Settings {
|
|
13 |
huggingfaceApiKey: getValidString(localStorage?.getItem?.(localStorageKeys.huggingfaceApiKey), defaultSettings.huggingfaceApiKey),
|
14 |
huggingfaceInferenceApiModel: getValidString(localStorage?.getItem?.(localStorageKeys.huggingfaceInferenceApiModel), defaultSettings.huggingfaceInferenceApiModel),
|
15 |
huggingfaceInferenceApiModelTrigger: getValidString(localStorage?.getItem?.(localStorageKeys.huggingfaceInferenceApiModelTrigger), defaultSettings.huggingfaceInferenceApiModelTrigger),
|
|
|
16 |
replicateApiKey: getValidString(localStorage?.getItem?.(localStorageKeys.replicateApiKey), defaultSettings.replicateApiKey),
|
17 |
replicateApiModel: getValidString(localStorage?.getItem?.(localStorageKeys.replicateApiModel), defaultSettings.replicateApiModel),
|
18 |
replicateApiModelVersion: getValidString(localStorage?.getItem?.(localStorageKeys.replicateApiModelVersion), defaultSettings.replicateApiModelVersion),
|
|
|
13 |
huggingfaceApiKey: getValidString(localStorage?.getItem?.(localStorageKeys.huggingfaceApiKey), defaultSettings.huggingfaceApiKey),
|
14 |
huggingfaceInferenceApiModel: getValidString(localStorage?.getItem?.(localStorageKeys.huggingfaceInferenceApiModel), defaultSettings.huggingfaceInferenceApiModel),
|
15 |
huggingfaceInferenceApiModelTrigger: getValidString(localStorage?.getItem?.(localStorageKeys.huggingfaceInferenceApiModelTrigger), defaultSettings.huggingfaceInferenceApiModelTrigger),
|
16 |
+
huggingfaceInferenceApiFileType: getValidString(localStorage?.getItem?.(localStorageKeys.huggingfaceInferenceApiFileType), defaultSettings.huggingfaceInferenceApiFileType),
|
17 |
replicateApiKey: getValidString(localStorage?.getItem?.(localStorageKeys.replicateApiKey), defaultSettings.replicateApiKey),
|
18 |
replicateApiModel: getValidString(localStorage?.getItem?.(localStorageKeys.replicateApiModel), defaultSettings.replicateApiModel),
|
19 |
replicateApiModelVersion: getValidString(localStorage?.getItem?.(localStorageKeys.replicateApiModelVersion), defaultSettings.replicateApiModelVersion),
|
src/app/interface/settings-dialog/index.tsx
CHANGED
@@ -43,6 +43,10 @@ export function SettingsDialog() {
|
|
43 |
localStorageKeys.huggingfaceInferenceApiModelTrigger,
|
44 |
defaultSettings.huggingfaceInferenceApiModelTrigger
|
45 |
)
|
|
|
|
|
|
|
|
|
46 |
const [replicateApiKey, setReplicateApiKey] = useLocalStorage<string>(
|
47 |
localStorageKeys.replicateApiKey,
|
48 |
defaultSettings.replicateApiKey
|
@@ -148,6 +152,17 @@ export function SettingsDialog() {
|
|
148 |
value={huggingfaceInferenceApiModel}
|
149 |
/>
|
150 |
</Field>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
<p className="text-sm text-zinc-700">
|
152 |
Using a LoRA? Don't forget the trigger keyword! Also you will want to use the "Neutral" style.
|
153 |
</p>
|
|
|
43 |
localStorageKeys.huggingfaceInferenceApiModelTrigger,
|
44 |
defaultSettings.huggingfaceInferenceApiModelTrigger
|
45 |
)
|
46 |
+
const [huggingfaceInferenceApiFileType, setHuggingfaceInferenceApiFileType] = useLocalStorage<string>(
|
47 |
+
localStorageKeys.huggingfaceInferenceApiFileType,
|
48 |
+
defaultSettings.huggingfaceInferenceApiFileType
|
49 |
+
)
|
50 |
const [replicateApiKey, setReplicateApiKey] = useLocalStorage<string>(
|
51 |
localStorageKeys.replicateApiKey,
|
52 |
defaultSettings.replicateApiKey
|
|
|
152 |
value={huggingfaceInferenceApiModel}
|
153 |
/>
|
154 |
</Field>
|
155 |
+
<Field>
|
156 |
+
<Label>The file type supported by the model (jpg, webp..):</Label>
|
157 |
+
<Input
|
158 |
+
className="font-mono"
|
159 |
+
placeholder="Inference API file type"
|
160 |
+
onChange={(x) => {
|
161 |
+
setHuggingfaceInferenceApiFileType(x.target.value)
|
162 |
+
}}
|
163 |
+
value={huggingfaceInferenceApiFileType}
|
164 |
+
/>
|
165 |
+
</Field>
|
166 |
<p className="text-sm text-zinc-700">
|
167 |
Using a LoRA? Don't forget the trigger keyword! Also you will want to use the "Neutral" style.
|
168 |
</p>
|
src/app/interface/settings-dialog/localStorageKeys.ts
CHANGED
@@ -6,6 +6,7 @@ export const localStorageKeys: Record<keyof Settings, string> = {
|
|
6 |
huggingfaceApiKey: "CONF_AUTH_HF_API_TOKEN",
|
7 |
huggingfaceInferenceApiModel: "CONF_RENDERING_HF_INFERENCE_API_BASE_MODEL",
|
8 |
huggingfaceInferenceApiModelTrigger: "CONF_RENDERING_HF_INFERENCE_API_BASE_MODEL_TRIGGER",
|
|
|
9 |
replicateApiKey: "CONF_AUTH_REPLICATE_API_TOKEN",
|
10 |
replicateApiModel: "CONF_RENDERING_REPLICATE_API_MODEL",
|
11 |
replicateApiModelVersion: "CONF_RENDERING_REPLICATE_API_MODEL_VERSION",
|
|
|
6 |
huggingfaceApiKey: "CONF_AUTH_HF_API_TOKEN",
|
7 |
huggingfaceInferenceApiModel: "CONF_RENDERING_HF_INFERENCE_API_BASE_MODEL",
|
8 |
huggingfaceInferenceApiModelTrigger: "CONF_RENDERING_HF_INFERENCE_API_BASE_MODEL_TRIGGER",
|
9 |
+
huggingfaceInferenceApiFileType: "CONF_RENDERING_HF_INFERENCE_API_FILE_TYPE",
|
10 |
replicateApiKey: "CONF_AUTH_REPLICATE_API_TOKEN",
|
11 |
replicateApiModel: "CONF_RENDERING_REPLICATE_API_MODEL",
|
12 |
replicateApiModelVersion: "CONF_RENDERING_REPLICATE_API_MODEL_VERSION",
|
src/app/main.tsx
CHANGED
@@ -10,8 +10,9 @@ import { Zoom } from "./interface/zoom"
|
|
10 |
import { getStory } from "./queries/getStory"
|
11 |
import { BottomBar } from "./interface/bottom-bar"
|
12 |
import { Page } from "./interface/page"
|
13 |
-
import {
|
14 |
import { joinWords } from "@/lib/joinWords"
|
|
|
15 |
|
16 |
export default function Main() {
|
17 |
const [_isPending, startTransition] = useTransition()
|
@@ -44,82 +45,93 @@ export default function Main() {
|
|
44 |
// I don't think we are going to need a rate limiter on the LLM part anymore
|
45 |
const enableRateLimiter = false // `${process.env.NEXT_PUBLIC_ENABLE_RATE_LIMITER}` === "true"
|
46 |
|
47 |
-
let llmResponse: LLMResponse = []
|
48 |
-
|
49 |
const [stylePrompt, userStoryPrompt] = prompt.split("||").map(x => x.trim())
|
50 |
|
51 |
-
try {
|
52 |
-
llmResponse = await getStory({
|
53 |
-
preset,
|
54 |
-
prompt: joinWords([ userStoryPrompt ]),
|
55 |
-
nbTotalPanels
|
56 |
-
})
|
57 |
-
console.log("LLM responded:", llmResponse)
|
58 |
-
|
59 |
-
} catch (err) {
|
60 |
-
console.log("LLM step failed due to:", err)
|
61 |
-
console.log("we are now switching to a degraded mode, using 4 similar panels")
|
62 |
-
|
63 |
-
llmResponse = []
|
64 |
-
for (let p = 0; p < nbTotalPanels; p++) {
|
65 |
-
llmResponse.push({
|
66 |
-
panel: p,
|
67 |
-
instructions: joinWords([
|
68 |
-
stylePrompt,
|
69 |
-
userStoryPrompt,
|
70 |
-
`${".".repeat(p)}`,
|
71 |
-
]),
|
72 |
-
caption: "(Sorry, LLM generation failed: using degraded mode)"
|
73 |
-
})
|
74 |
-
}
|
75 |
-
console.error(err)
|
76 |
-
}
|
77 |
-
|
78 |
// we have to limit the size of the prompt, otherwise the rest of the style won't be followed
|
79 |
|
80 |
let limitedStylePrompt = stylePrompt.trim().slice(0, 77).trim()
|
81 |
if (limitedStylePrompt.length !== stylePrompt.length) {
|
82 |
console.log("Sorry folks, the style prompt was cut to:", limitedStylePrompt)
|
83 |
}
|
84 |
-
|
85 |
// new experimental prompt: let's drop the user prompt, and only use the style
|
86 |
const lightPanelPromptPrefix = joinWords(preset.imagePrompt(limitedStylePrompt))
|
87 |
-
|
88 |
// this prompt will be used if the LLM generation failed
|
89 |
const degradedPanelPromptPrefix = joinWords([
|
90 |
...preset.imagePrompt(limitedStylePrompt),
|
91 |
-
|
92 |
// we re-inject the story, then
|
93 |
userStoryPrompt
|
94 |
])
|
95 |
|
96 |
-
|
|
|
97 |
const newCaptions: string[] = []
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
}
|
115 |
|
116 |
-
|
117 |
-
setPanels(newPanels)
|
118 |
-
|
119 |
setTimeout(() => {
|
120 |
setGeneratingStory(false)
|
121 |
setWaitABitMore(false)
|
122 |
}, enableRateLimiter ? 12000 : 0)
|
|
|
123 |
|
124 |
})
|
125 |
}, [prompt, preset?.label, nbTotalPanels]) // important: we need to react to preset changes too
|
|
|
10 |
import { getStory } from "./queries/getStory"
|
11 |
import { BottomBar } from "./interface/bottom-bar"
|
12 |
import { Page } from "./interface/page"
|
13 |
+
import { GeneratedPanel } from "@/types"
|
14 |
import { joinWords } from "@/lib/joinWords"
|
15 |
+
import { getStoryContinuation } from "./queries/getStoryContinuation"
|
16 |
|
17 |
export default function Main() {
|
18 |
const [_isPending, startTransition] = useTransition()
|
|
|
45 |
// I don't think we are going to need a rate limiter on the LLM part anymore
|
46 |
const enableRateLimiter = false // `${process.env.NEXT_PUBLIC_ENABLE_RATE_LIMITER}` === "true"
|
47 |
|
|
|
|
|
48 |
const [stylePrompt, userStoryPrompt] = prompt.split("||").map(x => x.trim())
|
49 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
// we have to limit the size of the prompt, otherwise the rest of the style won't be followed
|
51 |
|
52 |
let limitedStylePrompt = stylePrompt.trim().slice(0, 77).trim()
|
53 |
if (limitedStylePrompt.length !== stylePrompt.length) {
|
54 |
console.log("Sorry folks, the style prompt was cut to:", limitedStylePrompt)
|
55 |
}
|
56 |
+
|
57 |
// new experimental prompt: let's drop the user prompt, and only use the style
|
58 |
const lightPanelPromptPrefix = joinWords(preset.imagePrompt(limitedStylePrompt))
|
59 |
+
|
60 |
// this prompt will be used if the LLM generation failed
|
61 |
const degradedPanelPromptPrefix = joinWords([
|
62 |
...preset.imagePrompt(limitedStylePrompt),
|
63 |
+
|
64 |
// we re-inject the story, then
|
65 |
userStoryPrompt
|
66 |
])
|
67 |
|
68 |
+
let existingPanels: GeneratedPanel[] = []
|
69 |
+
const newPanelsPrompts: string[] = []
|
70 |
const newCaptions: string[] = []
|
71 |
+
|
72 |
+
const nbPanelsToGenerate = 2
|
73 |
+
|
74 |
+
for (
|
75 |
+
let currentPanel = 0;
|
76 |
+
currentPanel < nbTotalPanels;
|
77 |
+
currentPanel += nbPanelsToGenerate
|
78 |
+
) {
|
79 |
+
if (currentPanel > (nbTotalPanels / 2)) {
|
80 |
+
console.log("good, we are half way there, hold tight!")
|
81 |
+
// setWaitABitMore(true)
|
82 |
+
}
|
83 |
+
try {
|
84 |
+
const candidatePanels = await getStoryContinuation({
|
85 |
+
preset,
|
86 |
+
stylePrompt,
|
87 |
+
userStoryPrompt,
|
88 |
+
nbPanelsToGenerate,
|
89 |
+
existingPanels,
|
90 |
+
})
|
91 |
+
console.log("LLM generated some new panels:", candidatePanels)
|
92 |
+
|
93 |
+
existingPanels.push(...candidatePanels)
|
94 |
+
|
95 |
+
console.log(`Converting the ${nbPanelsToGenerate} new panels into image prompts..`)
|
96 |
+
|
97 |
+
const startAt = currentPanel
|
98 |
+
const endAt = currentPanel + nbPanelsToGenerate
|
99 |
+
for (let p = startAt; p < endAt; p++) {
|
100 |
+
newCaptions.push(existingPanels[p]?.caption.trim() || "...")
|
101 |
+
const newPanel = joinWords([
|
102 |
+
|
103 |
+
// what we do here is that ideally we give full control to the LLM for prompting,
|
104 |
+
// unless there was a catastrophic failure, in that case we preserve the original prompt
|
105 |
+
existingPanels[p]?.instructions
|
106 |
+
? lightPanelPromptPrefix
|
107 |
+
: degradedPanelPromptPrefix,
|
108 |
+
|
109 |
+
existingPanels[p]?.instructions
|
110 |
+
])
|
111 |
+
newPanelsPrompts.push(newPanel)
|
112 |
+
|
113 |
+
console.log(`Image prompt for panel ${p} => "${newPanel}"`)
|
114 |
+
}
|
115 |
+
|
116 |
+
// update the frontend
|
117 |
+
console.log("updating the frontend..")
|
118 |
+
setCaptions(newCaptions)
|
119 |
+
setPanels(newPanelsPrompts)
|
120 |
+
|
121 |
+
setGeneratingStory(false)
|
122 |
+
} catch (err) {
|
123 |
+
console.log("failed to generate the story, aborting here")
|
124 |
+
setGeneratingStory(false)
|
125 |
+
break
|
126 |
+
}
|
127 |
}
|
128 |
|
129 |
+
/*
|
|
|
|
|
130 |
setTimeout(() => {
|
131 |
setGeneratingStory(false)
|
132 |
setWaitABitMore(false)
|
133 |
}, enableRateLimiter ? 12000 : 0)
|
134 |
+
*/
|
135 |
|
136 |
})
|
137 |
}, [prompt, preset?.label, nbTotalPanels]) // important: we need to react to preset changes too
|
src/app/queries/getStory.ts
CHANGED
@@ -1,13 +1,13 @@
|
|
1 |
|
2 |
-
import { dirtyLLMJsonParser } from "@/lib/dirtyLLMJsonParser"
|
3 |
-
import { dirtyCaptionCleaner } from "@/lib/dirtyCaptionCleaner"
|
4 |
-
|
5 |
import { predict } from "./predict"
|
6 |
import { Preset } from "../engine/presets"
|
7 |
-
import {
|
8 |
import { cleanJson } from "@/lib/cleanJson"
|
9 |
import { createZephyrPrompt } from "@/lib/createZephyrPrompt"
|
10 |
|
|
|
|
|
|
|
11 |
export const getStory = async ({
|
12 |
preset,
|
13 |
prompt = "",
|
@@ -16,19 +16,19 @@ export const getStory = async ({
|
|
16 |
preset: Preset;
|
17 |
prompt: string;
|
18 |
nbTotalPanels: number;
|
19 |
-
}): Promise<
|
20 |
// throw new Error("Planned maintenance")
|
21 |
|
22 |
// In case you need to quickly debug the RENDERING engine you can uncomment this:
|
23 |
-
// return
|
24 |
|
25 |
const query = createZephyrPrompt([
|
26 |
{
|
27 |
role: "system",
|
28 |
content: [
|
29 |
`You are a writer specialized in ${preset.llmPrompt}`,
|
30 |
-
`Please write detailed drawing instructions and
|
31 |
-
`Give your response as a VALID JSON array like this: \`Array<{ panel: number; instructions: string; caption: string}>\`.`,
|
32 |
// `Give your response as Markdown bullet points.`,
|
33 |
`Be brief in your ${nbTotalPanels} instructions and narrative captions, don't add your own comments. The whole story must be captivating, smart, entertaining. Be straight to the point, and never reply things like "Sure, I can.." etc. Reply using valid JSON.`
|
34 |
].filter(item => item).join("\n")
|
@@ -37,7 +37,7 @@ export const getStory = async ({
|
|
37 |
role: "user",
|
38 |
content: `The story is: ${prompt}`,
|
39 |
}
|
40 |
-
]) + "\n[{"
|
41 |
|
42 |
|
43 |
let result = ""
|
@@ -64,10 +64,10 @@ export const getStory = async ({
|
|
64 |
// console.log("Raw response from LLM:", result)
|
65 |
const tmp = cleanJson(result)
|
66 |
|
67 |
-
let
|
68 |
|
69 |
try {
|
70 |
-
|
71 |
} catch (err) {
|
72 |
// console.log(`failed to read LLM response: ${err}`)
|
73 |
// console.log(`original response was:`, result)
|
@@ -75,7 +75,7 @@ export const getStory = async ({
|
|
75 |
// in case of failure here, it might be because the LLM hallucinated a completely different response,
|
76 |
// such as markdown. There is no real solution.. but we can try a fallback:
|
77 |
|
78 |
-
|
79 |
tmp.split("*")
|
80 |
.map(item => item.trim())
|
81 |
.map((cap, i) => ({
|
@@ -86,5 +86,5 @@ export const getStory = async ({
|
|
86 |
)
|
87 |
}
|
88 |
|
89 |
-
return
|
90 |
}
|
|
|
1 |
|
|
|
|
|
|
|
2 |
import { predict } from "./predict"
|
3 |
import { Preset } from "../engine/presets"
|
4 |
+
import { GeneratedPanels } from "@/types"
|
5 |
import { cleanJson } from "@/lib/cleanJson"
|
6 |
import { createZephyrPrompt } from "@/lib/createZephyrPrompt"
|
7 |
|
8 |
+
import { dirtyGeneratedPanelCleaner } from "@/lib/dirtyGeneratedPanelCleaner"
|
9 |
+
import { dirtyGeneratedPanelsParser } from "@/lib/dirtyGeneratedPanelsParser"
|
10 |
+
|
11 |
export const getStory = async ({
|
12 |
preset,
|
13 |
prompt = "",
|
|
|
16 |
preset: Preset;
|
17 |
prompt: string;
|
18 |
nbTotalPanels: number;
|
19 |
+
}): Promise<GeneratedPanels> => {
|
20 |
// throw new Error("Planned maintenance")
|
21 |
|
22 |
// In case you need to quickly debug the RENDERING engine you can uncomment this:
|
23 |
+
// return mockGeneratedPanels
|
24 |
|
25 |
const query = createZephyrPrompt([
|
26 |
{
|
27 |
role: "system",
|
28 |
content: [
|
29 |
`You are a writer specialized in ${preset.llmPrompt}`,
|
30 |
+
`Please write detailed drawing instructions and short (2-3 sentences long) speech captions for the ${nbTotalPanels} panels of a new story. Please make sure each of the ${nbTotalPanels} panels include info about character gender, age, origin, clothes, colors, location, lights, etc.`,
|
31 |
+
`Give your response as a VALID JSON array like this: \`Array<{ panel: number; instructions: string; caption: string; }>\`.`,
|
32 |
// `Give your response as Markdown bullet points.`,
|
33 |
`Be brief in your ${nbTotalPanels} instructions and narrative captions, don't add your own comments. The whole story must be captivating, smart, entertaining. Be straight to the point, and never reply things like "Sure, I can.." etc. Reply using valid JSON.`
|
34 |
].filter(item => item).join("\n")
|
|
|
37 |
role: "user",
|
38 |
content: `The story is: ${prompt}`,
|
39 |
}
|
40 |
+
]) + "\n```[{"
|
41 |
|
42 |
|
43 |
let result = ""
|
|
|
64 |
// console.log("Raw response from LLM:", result)
|
65 |
const tmp = cleanJson(result)
|
66 |
|
67 |
+
let GeneratedPanels: GeneratedPanels = []
|
68 |
|
69 |
try {
|
70 |
+
GeneratedPanels = dirtyGeneratedPanelsParser(tmp)
|
71 |
} catch (err) {
|
72 |
// console.log(`failed to read LLM response: ${err}`)
|
73 |
// console.log(`original response was:`, result)
|
|
|
75 |
// in case of failure here, it might be because the LLM hallucinated a completely different response,
|
76 |
// such as markdown. There is no real solution.. but we can try a fallback:
|
77 |
|
78 |
+
GeneratedPanels = (
|
79 |
tmp.split("*")
|
80 |
.map(item => item.trim())
|
81 |
.map((cap, i) => ({
|
|
|
86 |
)
|
87 |
}
|
88 |
|
89 |
+
return GeneratedPanels.map(res => dirtyGeneratedPanelCleaner(res))
|
90 |
}
|
src/app/queries/getStoryContinuation.ts
CHANGED
@@ -1,96 +1,68 @@
|
|
1 |
-
|
2 |
-
import { dirtyLLMJsonParser } from "@/lib/dirtyLLMJsonParser"
|
3 |
-
import { dirtyCaptionCleaner } from "@/lib/dirtyCaptionCleaner"
|
4 |
-
|
5 |
-
import { predict } from "./predict"
|
6 |
import { Preset } from "../engine/presets"
|
7 |
-
import {
|
8 |
-
import {
|
9 |
-
import {
|
10 |
|
11 |
export const getStoryContinuation = async ({
|
12 |
preset,
|
13 |
-
|
14 |
-
|
15 |
-
|
|
|
16 |
}: {
|
17 |
preset: Preset;
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
// In case you need to quickly debug the RENDERING engine you can uncomment this:
|
25 |
-
// return mockLLMResponse
|
26 |
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
|
31 |
-
|
32 |
-
{
|
33 |
-
role: "system",
|
34 |
-
content: [
|
35 |
-
`You are a writer specialized in ${preset.llmPrompt}`,
|
36 |
-
`Please write detailed drawing instructions and a short (2-3 sentences long) speech caption for the next ${nbTotalPanels} panels of a new story, but keep it open-ended (it will be continued and expanded later). Please make sure each of those ${nbTotalPanels} panels include info about character gender, age, origin, clothes, colors, location, lights, etc.`,
|
37 |
-
`Give your response as a VALID JSON array like this: \`Array<{ panel: number; instructions: string; caption: string}>\`.`,
|
38 |
-
// `Give your response as Markdown bullet points.`,
|
39 |
-
`Be brief in your ${nbTotalPanels} instructions and narrative captions, don't add your own comments. The captions must be captivating, smart, entertaining. Be straight to the point, and never reply things like "Sure, I can.." etc. Reply using valid JSON.`
|
40 |
-
].filter(item => item).join("\n")
|
41 |
-
},
|
42 |
-
{
|
43 |
-
role: "user",
|
44 |
-
content: `The story is about: ${prompt}.${previousCaptionsTemplate}`,
|
45 |
-
}
|
46 |
-
]) + "\n[{"
|
47 |
|
|
|
48 |
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
-
|
52 |
-
// console.log(`calling predict(${query}, ${nbTotalPanels})`)
|
53 |
-
result = `${await predict(query, nbTotalPanels) || ""}`.trim()
|
54 |
-
if (!result.length) {
|
55 |
-
throw new Error("empty result!")
|
56 |
-
}
|
57 |
-
} catch (err) {
|
58 |
-
// console.log(`prediction of the story failed, trying again..`)
|
59 |
-
try {
|
60 |
-
result = `${await predict(query+".", nbTotalPanels) || ""}`.trim()
|
61 |
-
if (!result.length) {
|
62 |
-
throw new Error("empty result!")
|
63 |
-
}
|
64 |
-
} catch (err) {
|
65 |
-
console.error(`prediction of the story failed again 💩`)
|
66 |
-
throw new Error(`failed to generate the story ${err}`)
|
67 |
-
}
|
68 |
-
}
|
69 |
|
70 |
-
// console.log("Raw response from LLM:", result)
|
71 |
-
const tmp = cleanJson(result)
|
72 |
-
|
73 |
-
let llmResponse: LLMResponse = []
|
74 |
|
75 |
-
|
76 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
} catch (err) {
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
caption:
|
90 |
-
|
91 |
-
|
92 |
-
)
|
|
|
|
|
93 |
}
|
94 |
-
|
95 |
-
return llmResponse.map(res => dirtyCaptionCleaner(res))
|
96 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import { Preset } from "../engine/presets"
|
2 |
+
import { GeneratedPanel } from "@/types"
|
3 |
+
import { predictNextPanels } from "./predictNextPanels"
|
4 |
+
import { joinWords } from "@/lib/joinWords"
|
5 |
|
6 |
export const getStoryContinuation = async ({
|
7 |
preset,
|
8 |
+
stylePrompt = "",
|
9 |
+
userStoryPrompt = "",
|
10 |
+
nbPanelsToGenerate = 2,
|
11 |
+
existingPanels = [],
|
12 |
}: {
|
13 |
preset: Preset;
|
14 |
+
stylePrompt: string;
|
15 |
+
userStoryPrompt: string;
|
16 |
+
nbPanelsToGenerate: number;
|
17 |
+
existingPanels: GeneratedPanel[];
|
18 |
+
}): Promise<GeneratedPanel[]> => {
|
|
|
|
|
|
|
19 |
|
20 |
+
let panels: GeneratedPanel[] = []
|
21 |
+
const startAt: number = existingPanels.at(-1)?.panel || existingPanels.length || 0
|
22 |
+
const endAt: number = startAt + nbPanelsToGenerate
|
23 |
|
24 |
+
try {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
+
const prompt = joinWords([ userStoryPrompt ])
|
27 |
|
28 |
+
const panelCandidates: GeneratedPanel[] = await predictNextPanels({
|
29 |
+
preset,
|
30 |
+
prompt,
|
31 |
+
nbPanelsToGenerate,
|
32 |
+
existingPanels,
|
33 |
+
})
|
34 |
|
35 |
+
console.log("LLM responded with panels:", panelCandidates)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
|
|
|
|
|
|
|
|
37 |
|
38 |
+
// we clean the output from the LLM
|
39 |
+
// most importantly, we need to adjust the panel index,
|
40 |
+
// to start from where we last finished
|
41 |
+
for (let p = startAt; p < endAt; p++) {
|
42 |
+
panels.push({
|
43 |
+
panel: p,
|
44 |
+
instructions: `${panelCandidates[p]?.instructions || ""}`,
|
45 |
+
caption: `${panelCandidates[p]?.caption || ""}`,
|
46 |
+
})
|
47 |
+
}
|
48 |
+
|
49 |
} catch (err) {
|
50 |
+
console.log("LLM step failed due to:", err)
|
51 |
+
console.log("we are now switching to a degraded mode, using 4 similar panels")
|
52 |
+
panels = []
|
53 |
+
for (let p = startAt; p < endAt; p++) {
|
54 |
+
panels.push({
|
55 |
+
panel: p,
|
56 |
+
instructions: joinWords([
|
57 |
+
stylePrompt,
|
58 |
+
userStoryPrompt,
|
59 |
+
`${".".repeat(p)}`,
|
60 |
+
]),
|
61 |
+
caption: "(Sorry, LLM generation failed: using degraded mode)"
|
62 |
+
})
|
63 |
+
}
|
64 |
+
console.error(err)
|
65 |
+
} finally {
|
66 |
+
return panels
|
67 |
}
|
68 |
+
}
|
|
|
|
src/app/queries/mockLLMResponse.ts
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
-
import {
|
2 |
|
3 |
-
export const
|
4 |
"panel": 1,
|
5 |
"instructions": "wide shot of detective walking towards a UFO crash site",
|
6 |
"caption": "Detective Jameson investigates a UFO crash in the desert"
|
|
|
1 |
+
import { GeneratedPanels } from "@/types"
|
2 |
|
3 |
+
export const mockGeneratedPanels: GeneratedPanels = [{
|
4 |
"panel": 1,
|
5 |
"instructions": "wide shot of detective walking towards a UFO crash site",
|
6 |
"caption": "Detective Jameson investigates a UFO crash in the desert"
|
src/app/queries/predictNextPanels.ts
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import { predict } from "./predict"
|
3 |
+
import { Preset } from "../engine/presets"
|
4 |
+
import { GeneratedPanel } from "@/types"
|
5 |
+
import { cleanJson } from "@/lib/cleanJson"
|
6 |
+
import { createZephyrPrompt } from "@/lib/createZephyrPrompt"
|
7 |
+
import { dirtyGeneratedPanelCleaner } from "@/lib/dirtyGeneratedPanelCleaner"
|
8 |
+
import { dirtyGeneratedPanelsParser } from "@/lib/dirtyGeneratedPanelsParser"
|
9 |
+
|
10 |
+
export const predictNextPanels = async ({
|
11 |
+
preset,
|
12 |
+
prompt = "",
|
13 |
+
nbPanelsToGenerate = 2,
|
14 |
+
existingPanels = [],
|
15 |
+
}: {
|
16 |
+
preset: Preset;
|
17 |
+
prompt: string;
|
18 |
+
nbPanelsToGenerate: number;
|
19 |
+
existingPanels: GeneratedPanel[];
|
20 |
+
}): Promise<GeneratedPanel[]> => {
|
21 |
+
// throw new Error("Planned maintenance")
|
22 |
+
|
23 |
+
// In case you need to quickly debug the RENDERING engine you can uncomment this:
|
24 |
+
// return mockGeneratedPanels
|
25 |
+
|
26 |
+
const existingPanelsTemplate = existingPanels.length
|
27 |
+
? ` To help you, here are the previous panels and their captions (note: if you see an anomaly here eg. no caption or the same description repeated multiple times, do not hesitate to fix the story): ${JSON.stringify(existingPanels, null, 2)}`
|
28 |
+
: ''
|
29 |
+
|
30 |
+
const query = createZephyrPrompt([
|
31 |
+
{
|
32 |
+
role: "system",
|
33 |
+
content: [
|
34 |
+
`You are a writer specialized in ${preset.llmPrompt}`,
|
35 |
+
`Please write detailed drawing instructions and short (2-3 sentences long) speech captions for the next ${nbPanelsToGenerate} panels of a new story, but keep it open-ended (it will be continued and expanded later). Please make sure each of those ${nbPanelsToGenerate} panels include info about character gender, age, origin, clothes, colors, location, lights, etc.`,
|
36 |
+
`Give your response as a VALID JSON array like this: \`Array<{ panel: number; instructions: string; caption: string; }>\`.`,
|
37 |
+
// `Give your response as Markdown bullet points.`,
|
38 |
+
`Be brief in your ${nbPanelsToGenerate} instructions and narrative captions, don't add your own comments. The captions must be captivating, smart, entertaining. Be straight to the point, and never reply things like "Sure, I can.." etc. Reply using valid JSON.`
|
39 |
+
].filter(item => item).join("\n")
|
40 |
+
},
|
41 |
+
{
|
42 |
+
role: "user",
|
43 |
+
content: `The story is about: ${prompt}.${existingPanelsTemplate}`,
|
44 |
+
}
|
45 |
+
]) + "\n```[{"
|
46 |
+
|
47 |
+
|
48 |
+
let result = ""
|
49 |
+
|
50 |
+
try {
|
51 |
+
// console.log(`calling predict(${query}, ${nbTotalPanels})`)
|
52 |
+
result = `${await predict(query, nbPanelsToGenerate) || ""}`.trim()
|
53 |
+
if (!result.length) {
|
54 |
+
throw new Error("empty result!")
|
55 |
+
}
|
56 |
+
} catch (err) {
|
57 |
+
// console.log(`prediction of the story failed, trying again..`)
|
58 |
+
try {
|
59 |
+
result = `${await predict(query+".", nbPanelsToGenerate) || ""}`.trim()
|
60 |
+
if (!result.length) {
|
61 |
+
throw new Error("empty result!")
|
62 |
+
}
|
63 |
+
} catch (err) {
|
64 |
+
console.error(`prediction of the story failed again 💩`)
|
65 |
+
throw new Error(`failed to generate the story ${err}`)
|
66 |
+
}
|
67 |
+
}
|
68 |
+
|
69 |
+
// console.log("Raw response from LLM:", result)
|
70 |
+
const tmp = cleanJson(result)
|
71 |
+
|
72 |
+
let generatedPanels: GeneratedPanel[] = []
|
73 |
+
|
74 |
+
try {
|
75 |
+
generatedPanels = dirtyGeneratedPanelsParser(tmp)
|
76 |
+
} catch (err) {
|
77 |
+
// console.log(`failed to read LLM response: ${err}`)
|
78 |
+
// console.log(`original response was:`, result)
|
79 |
+
|
80 |
+
// in case of failure here, it might be because the LLM hallucinated a completely different response,
|
81 |
+
// such as markdown. There is no real solution.. but we can try a fallback:
|
82 |
+
|
83 |
+
generatedPanels = (
|
84 |
+
tmp.split("*")
|
85 |
+
.map(item => item.trim())
|
86 |
+
.map((cap, i) => ({
|
87 |
+
panel: i,
|
88 |
+
caption: cap,
|
89 |
+
instructions: cap,
|
90 |
+
}))
|
91 |
+
)
|
92 |
+
}
|
93 |
+
|
94 |
+
return generatedPanels.map(res => dirtyGeneratedPanelCleaner(res))
|
95 |
+
}
|
src/lib/cleanJson.ts
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
import { dirtyLLMResponseCleaner } from "./dirtyLLMResponseCleaner"
|
2 |
|
3 |
-
export function cleanJson(input: string) {
|
4 |
|
5 |
if (input.includes('```')) {
|
6 |
input = input.split('```')[0]
|
|
|
1 |
import { dirtyLLMResponseCleaner } from "./dirtyLLMResponseCleaner"
|
2 |
|
3 |
+
export function cleanJson(input: string): string {
|
4 |
|
5 |
if (input.includes('```')) {
|
6 |
input = input.split('```')[0]
|
src/lib/{dirtyCaptionCleaner.ts → dirtyGeneratedPanelCleaner.ts}
RENAMED
@@ -1,16 +1,14 @@
|
|
1 |
-
|
|
|
|
|
2 |
panel,
|
3 |
instructions,
|
4 |
caption
|
5 |
-
}: {
|
6 |
-
|
7 |
-
instructions: string;
|
8 |
-
caption: string
|
9 |
-
}) {
|
10 |
-
let newCaption = caption.split(":").pop()?.trim() || ""
|
11 |
let newInstructions = (
|
12 |
// need to remove from LLM garbage here, too
|
13 |
-
(instructions
|
14 |
.replaceAll("Draw a", "")
|
15 |
.replaceAll("Draw the", "")
|
16 |
.replaceAll("Draw", "")
|
|
|
1 |
+
import { GeneratedPanel } from "@/types"
|
2 |
+
|
3 |
+
export function dirtyGeneratedPanelCleaner({
|
4 |
panel,
|
5 |
instructions,
|
6 |
caption
|
7 |
+
}: GeneratedPanel): GeneratedPanel {
|
8 |
+
let newCaption = `${caption || ""}`.split(":").pop()?.trim() || ""
|
|
|
|
|
|
|
|
|
9 |
let newInstructions = (
|
10 |
// need to remove from LLM garbage here, too
|
11 |
+
(`${instructions || ""}`.split(":").pop() || "")
|
12 |
.replaceAll("Draw a", "")
|
13 |
.replaceAll("Draw the", "")
|
14 |
.replaceAll("Draw", "")
|
src/lib/{dirtyLLMJsonParser.ts → dirtyGeneratedPanelsParser.ts}
RENAMED
@@ -1,8 +1,8 @@
|
|
1 |
-
import {
|
2 |
import { cleanJson } from "./cleanJson"
|
3 |
import { parseBadJSON } from "./parseBadJSON"
|
4 |
|
5 |
-
export function
|
6 |
|
7 |
if (input.includes("```")) {
|
8 |
input = input.split("```")[0]
|
@@ -10,7 +10,7 @@ export function dirtyLLMJsonParser(input: string): LLMResponse {
|
|
10 |
// we only keep what's after the first [
|
11 |
let jsonOrNot = cleanJson(input)
|
12 |
|
13 |
-
const jsonData = parseBadJSON(jsonOrNot) as
|
14 |
|
15 |
const results = jsonData.map((item, i) => {
|
16 |
let panel = i
|
|
|
1 |
+
import { GeneratedPanel } from "@/types"
|
2 |
import { cleanJson } from "./cleanJson"
|
3 |
import { parseBadJSON } from "./parseBadJSON"
|
4 |
|
5 |
+
export function dirtyGeneratedPanelsParser(input: string): GeneratedPanel[] {
|
6 |
|
7 |
if (input.includes("```")) {
|
8 |
input = input.split("```")[0]
|
|
|
10 |
// we only keep what's after the first [
|
11 |
let jsonOrNot = cleanJson(input)
|
12 |
|
13 |
+
const jsonData = parseBadJSON(jsonOrNot) as GeneratedPanel[]
|
14 |
|
15 |
const results = jsonData.map((item, i) => {
|
16 |
let panel = i
|
src/lib/dirtyLLMResponseCleaner.ts
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
export function dirtyLLMResponseCleaner(input: string) {
|
2 |
let str = (
|
3 |
`${input || ""}`
|
4 |
// a summary of all the weird hallucinations I saw it make..
|
|
|
1 |
+
export function dirtyLLMResponseCleaner(input: string): string {
|
2 |
let str = (
|
3 |
`${input || ""}`
|
4 |
// a summary of all the weird hallucinations I saw it make..
|
src/lib/parseBadJSON.ts
CHANGED
@@ -1,9 +1,9 @@
|
|
1 |
-
import {
|
2 |
|
3 |
-
export function parseBadJSON(jsonLikeString: string):
|
4 |
|
5 |
try {
|
6 |
-
return JSON.parse(jsonLikeString) as
|
7 |
} catch (err) {
|
8 |
var regex = /\{\s*"panel":\s*(\d+),\s*"instructions"\s*:\s*"([^"]+)",\s*"caption":\s*"([^"]*)"\s*\}/gs;
|
9 |
|
@@ -19,6 +19,6 @@ export function parseBadJSON(jsonLikeString: string): LLMResponse {
|
|
19 |
results.push(json);
|
20 |
}
|
21 |
|
22 |
-
return results as
|
23 |
}
|
24 |
}
|
|
|
1 |
+
import { GeneratedPanels } from "@/types"
|
2 |
|
3 |
+
export function parseBadJSON(jsonLikeString: string): GeneratedPanels {
|
4 |
|
5 |
try {
|
6 |
+
return JSON.parse(jsonLikeString) as GeneratedPanels
|
7 |
} catch (err) {
|
8 |
var regex = /\{\s*"panel":\s*(\d+),\s*"instructions"\s*:\s*"([^"]+)",\s*"caption":\s*"([^"]*)"\s*\}/gs;
|
9 |
|
|
|
19 |
results.push(json);
|
20 |
}
|
21 |
|
22 |
+
return results as GeneratedPanels
|
23 |
}
|
24 |
}
|
src/types.ts
CHANGED
@@ -87,7 +87,13 @@ export interface ImageAnalysisResponse {
|
|
87 |
error?: string
|
88 |
}
|
89 |
|
90 |
-
export type
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
|
92 |
export type LLMEngine =
|
93 |
| "INFERENCE_API"
|
@@ -154,6 +160,7 @@ export type Settings = {
|
|
154 |
huggingfaceApiKey: string
|
155 |
huggingfaceInferenceApiModel: string
|
156 |
huggingfaceInferenceApiModelTrigger: string
|
|
|
157 |
replicateApiKey: string
|
158 |
replicateApiModel: string
|
159 |
replicateApiModelVersion: string
|
|
|
87 |
error?: string
|
88 |
}
|
89 |
|
90 |
+
export type GeneratedPanel = {
|
91 |
+
panel: number
|
92 |
+
instructions: string
|
93 |
+
caption: string
|
94 |
+
}
|
95 |
+
|
96 |
+
export type GeneratedPanels = GeneratedPanel[]
|
97 |
|
98 |
export type LLMEngine =
|
99 |
| "INFERENCE_API"
|
|
|
160 |
huggingfaceApiKey: string
|
161 |
huggingfaceInferenceApiModel: string
|
162 |
huggingfaceInferenceApiModelTrigger: string
|
163 |
+
huggingfaceInferenceApiFileType: string
|
164 |
replicateApiKey: string
|
165 |
replicateApiModel: string
|
166 |
replicateApiModelVersion: string
|