Spaces:
Sleeping
Sleeping
from transformers import MarianMTModel, MarianTokenizer | |
import spacy | |
import streamlit as st | |
nlp = spacy.load("./cycLingoNER") | |
nlp.add_pipe('sentencizer') | |
colors = {"cycLingo": "#F67DE3"} | |
options = {"colors": colors} | |
# Load NMT model | |
tokenizer = MarianTokenizer.from_pretrained('DanielHellebust/cyclingo') | |
model = MarianMTModel.from_pretrained("DanielHellebust/cyclingo") | |
st.title('cycLingo Translator') | |
st.markdown('Translate cycling specific text from English to Norwegian') | |
st.subheader('English:') | |
text = st.text_area('English',label_visibility='hidden', placeholder='Enter text to translate to Norwegian', height=200) | |
if st.button('Translate'): | |
text_list = text.split() | |
if len(text_list) > 100: | |
st.error('Please enter less than 100 words to get full translation') | |
translated = model.generate(**tokenizer(text, return_tensors="pt", padding=True)) | |
result = [tokenizer.decode(t, skip_special_tokens=True) for t in translated] | |
st.subheader('Detected cycLingo entities:') | |
doc = nlp(text) | |
html = spacy.displacy.render(doc, style="ent", options=options) | |
st.markdown(html, unsafe_allow_html=True) | |
st.markdown(' ') | |
# update textarea with result as value | |
st.subheader('Norwegian Translation:') | |
st.text_area('Norwegian Translation',label_visibility='hidden', value=result[0], height=200) | |