Spaces:
Paused
Paused
Danielrahmai1991
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
from threading import Thread
|
2 |
-
from transformers import TextStreamer
|
3 |
from unsloth import FastLanguageModel
|
4 |
import torch
|
5 |
import gradio as gr
|
@@ -21,7 +21,10 @@ FastLanguageModel.for_inference(model)
|
|
21 |
print("model loaded")
|
22 |
|
23 |
|
24 |
-
streamer =
|
|
|
|
|
|
|
25 |
|
26 |
messages = []
|
27 |
|
@@ -36,25 +39,26 @@ def generate_text(prompt, max_length, top_p, top_k):
|
|
36 |
)
|
37 |
|
38 |
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
|
|
43 |
|
44 |
-
_ = model.generate(input_ids, streamer = streamer, max_new_tokens = int(max_length), pad_token_id = tokenizer.eos_token_id,
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
|
53 |
generated_text=[]
|
54 |
|
55 |
for text in streamer:
|
56 |
generated_text.append(text)
|
57 |
-
print(generated_text)
|
58 |
yield "".join(generated_text)
|
59 |
|
60 |
messages.append({"role": "assistant", "content": "".join(generated_text)})
|
|
|
1 |
from threading import Thread
|
2 |
+
from transformers import TextStreamer, TextIteratorStreamer
|
3 |
from unsloth import FastLanguageModel
|
4 |
import torch
|
5 |
import gradio as gr
|
|
|
21 |
print("model loaded")
|
22 |
|
23 |
|
24 |
+
streamer = TextIteratorStreamer(
|
25 |
+
tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True
|
26 |
+
)
|
27 |
+
# streamer = TextStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens = True)
|
28 |
|
29 |
messages = []
|
30 |
|
|
|
39 |
)
|
40 |
|
41 |
|
42 |
+
generate_kwargs = dict(
|
43 |
+
max_length=int(max_length),top_p=float(top_p), do_sample=True,
|
44 |
+
top_k=int(top_k), streamer=streamer, temperature=0.6, repetition_penalty=1.2
|
45 |
+
|
46 |
+
)
|
47 |
|
48 |
+
# _ = model.generate(input_ids, streamer = streamer, max_new_tokens = int(max_length), pad_token_id = tokenizer.eos_token_id,
|
49 |
+
# temperature=0.6, # Adjust this value
|
50 |
+
# top_k=int(top_k), # Adjust this value
|
51 |
+
# top_p=float(top_p), # Adjust this value
|
52 |
+
# repetition_penalty=1.2
|
53 |
+
# )
|
54 |
+
t = Thread(target=model.generate, args=(input_ids,), kwargs=generate_kwargs)
|
55 |
+
t.start()
|
56 |
|
57 |
generated_text=[]
|
58 |
|
59 |
for text in streamer:
|
60 |
generated_text.append(text)
|
61 |
+
# print(generated_text)
|
62 |
yield "".join(generated_text)
|
63 |
|
64 |
messages.append({"role": "assistant", "content": "".join(generated_text)})
|