File size: 5,212 Bytes
a613a45
 
 
 
 
 
428c34f
a613a45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import gradio as gr

from transformers import pipeline
from typing import Dict, Union
from gliner import GLiNER

model = GLiNER.from_pretrained("urchade/gliner_multi-v2.1")  # numind/NuNER_Zero

classifier = pipeline("zero-shot-classification", model="MoritzLaurer/deberta-v3-base-zeroshot-v1")

css = """
h1 {
    text-align: center;
    display:block;
}
"""

#define a function to process your input and output
def zero_shot(doc, candidates):
    given_labels = candidates.split(", ")
    dictionary = classifier(doc, given_labels)
    labels = dictionary['labels']
    scores = dictionary['scores']
    return dict(zip(labels, scores))

examples_text = [
    [
        "Pasar saham ngalaman panurunan nu signifikan akibat kateupastian global.",
        "ékonomi, pulitik, bisnis, kauangan, téknologi"
    ],
    [
        "I am very happy today but suddenly sad because of the recent news.",
        "positive, negative, neutral"
    ],
    [
        "I just received the best news ever! I got the job I always wanted!",
        "joy, sadness, anger, surprise, fear, disgust"
    ],
]
examples_ner = [
    [
        "Pada tahun 1945, Indonesia memproklamasikan kemerdekaannya dari penjajahan Belanda. Proklamasi tersebut dibacakan oleh Soekarno dan Mohammad Hatta di Jakarta.",
        "tahun, negara, tokoh, lokasi",
        0.3
    ],
    [
        "Mount Everest is the highest mountain above sea level, located in the Himalayas. It stands at 8,848 meters (29,029 ft) and attracts many climbers.",
        "location, measurement, person",
        0.3
    ],
     [
        "Perusahaan teknologi raksasa, Google, mbukak kantor cabang anyar ing Jakarta ing wulan Januari 2020 kanggo nggedhekake operasine ing Asia Tenggara",
        "perusahaan, lokasi, wulan, taun",
        0.3
    ],
]

def merge_entities(entities):
    if not entities:
        return []
    merged = []
    current = entities[0]
    for next_entity in entities[1:]:
        if next_entity['entity'] == current['entity'] and (next_entity['start'] == current['end'] + 1 or next_entity['start'] == current['end']):
            current['word'] += ' ' + next_entity['word']
            current['end'] = next_entity['end']
        else:
            merged.append(current)
            current = next_entity
    merged.append(current)
    return merged

def ner(
    text, labels: str, threshold: float, nested_ner: bool
) -> Dict[str, Union[str, int, float]]:
    labels = labels.split(",")
    r = {
        "text": text,
        "entities": [
            {
                "entity": entity["label"],
                "word": entity["text"],
                "start": entity["start"],
                "end": entity["end"],
                "score": 0,
            }
            for entity in model.predict_entities(
                text, labels, flat_ner=not nested_ner, threshold=threshold
            )
        ],
    }
    r["entities"] =  merge_entities(r["entities"])
    return r


with gr.Blocks(title="Zero-Shot Demo", css=css) as demo: #, theme=gr.themes.Soft()

    gr.Markdown(
            """
            # Zero-Shot Model Demo
            """
        )

    #create input and output objects
    with gr.Tab("Zero-Shot Text Classification"):

        gr.Markdown(
            """
            ## Zero-Shot Text Classification
            """
        )

        input1 = gr.Textbox(label="Text", value=examples_text[0][0])
        input2 = gr.Textbox(label="Labels",value=examples_text[0][1])
        output = gr.Label(label="Output")

        gui = gr.Interface(
            # title="Zero-Shot Text Classification",
            fn=zero_shot,
            inputs=[input1, input2],
            outputs=[output]
        )

        examples = gr.Examples(
            examples_text,
            fn=zero_shot,
            inputs=[input1, input2],
            outputs=output,
            cache_examples=True,
        )


    with gr.Tab("Zero-Shot NER"):
        gr.Markdown(
            """
            ## Zero-Shot Named Entity Recognition (NER)
            """
        )

        input_text = gr.Textbox(
            value=examples_ner[0][0], label="Text input", placeholder="Enter your text here", lines=3
        )
        with gr.Row() as row:
            labels = gr.Textbox(
                value=examples_ner[0][1],
                label="Labels",
                placeholder="Enter your labels here (comma separated)",
                scale=2,
            )
            threshold = gr.Slider(
                0,
                1,
                value=examples_ner[0][2],
                step=0.01,
                label="Threshold",
                info="Lower the threshold to increase how many entities get predicted.",
                scale=1,
            )
        
        output = gr.HighlightedText(label="Predicted Entities")

        submit_btn = gr.Button("Submit")

        examples = gr.Examples(
            examples_ner,
            fn=ner,
            inputs=[input_text, labels, threshold],
            outputs=output,
            cache_examples=True,
        )

        submit_btn.click(
            fn=ner, inputs=[input_text, labels, threshold], outputs=output
        )

demo.queue()
demo.launch(debug=True)