Commit
·
3c15d19
1
Parent(s):
0ef7a85
update options
Browse files
app.py
CHANGED
@@ -3,11 +3,15 @@ import random
|
|
3 |
import shutil
|
4 |
import tempfile
|
5 |
import zipfile
|
|
|
6 |
|
7 |
import gradio as gr
|
8 |
-
from huggingface_hub import HfApi
|
9 |
from pdf2image import convert_from_path
|
10 |
from PyPDF2 import PdfReader
|
|
|
|
|
|
|
11 |
|
12 |
|
13 |
def pdf_to_images(pdf_files, sample_size, temp_dir, progress=gr.Progress()):
|
@@ -48,10 +52,25 @@ def pdf_to_images(pdf_files, sample_size, temp_dir, progress=gr.Progress()):
|
|
48 |
return all_images, f"Saved {len(all_images)} images to temporary directory"
|
49 |
|
50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
def process_pdfs(
|
52 |
pdf_files,
|
53 |
sample_size,
|
54 |
hf_repo,
|
|
|
|
|
55 |
oauth_token: gr.OAuthToken | None,
|
56 |
progress=gr.Progress(),
|
57 |
):
|
@@ -81,12 +100,15 @@ def process_pdfs(
|
|
81 |
progress(0, desc="Starting PDF processing")
|
82 |
images, message = pdf_to_images(pdf_files, sample_size, images_dir)
|
83 |
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
|
|
|
|
|
|
90 |
|
91 |
if hf_repo:
|
92 |
try:
|
@@ -94,6 +116,7 @@ def process_pdfs(
|
|
94 |
hf_api.create_repo(
|
95 |
hf_repo,
|
96 |
repo_type="dataset",
|
|
|
97 |
)
|
98 |
hf_api.upload_folder(
|
99 |
folder_path=images_dir,
|
@@ -101,7 +124,41 @@ def process_pdfs(
|
|
101 |
repo_type="dataset",
|
102 |
path_in_repo="images",
|
103 |
)
|
104 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
except Exception as e:
|
106 |
message += f"\nFailed to upload to Hugging Face: {str(e)}"
|
107 |
|
@@ -140,6 +197,9 @@ with gr.Blocks() as demo:
|
|
140 |
placeholder="username/repo-name",
|
141 |
info="Enter the Hugging Face repository name in the format 'username/repo-name'",
|
142 |
)
|
|
|
|
|
|
|
143 |
with gr.Accordion("View converted images", open=False):
|
144 |
output_gallery = gr.Gallery(label="Converted Images")
|
145 |
status_text = gr.Markdown(label="Status")
|
@@ -148,7 +208,7 @@ with gr.Blocks() as demo:
|
|
148 |
submit_button = gr.Button("Convert PDFs to page images")
|
149 |
submit_button.click(
|
150 |
process_pdfs,
|
151 |
-
inputs=[pdf_files, sample_size, hf_repo],
|
152 |
outputs=[output_gallery, download_button, status_text],
|
153 |
)
|
154 |
|
|
|
3 |
import shutil
|
4 |
import tempfile
|
5 |
import zipfile
|
6 |
+
from datetime import datetime
|
7 |
|
8 |
import gradio as gr
|
9 |
+
from huggingface_hub import HfApi, DatasetCard, DatasetCardData
|
10 |
from pdf2image import convert_from_path
|
11 |
from PyPDF2 import PdfReader
|
12 |
+
from dataset_card_template import DATASET_CARD_TEMPLATE
|
13 |
+
|
14 |
+
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
|
15 |
|
16 |
|
17 |
def pdf_to_images(pdf_files, sample_size, temp_dir, progress=gr.Progress()):
|
|
|
52 |
return all_images, f"Saved {len(all_images)} images to temporary directory"
|
53 |
|
54 |
|
55 |
+
def get_size_category(num_images):
|
56 |
+
if num_images < 1000:
|
57 |
+
return "n<1K"
|
58 |
+
elif num_images < 10000:
|
59 |
+
return "1K<n<10K"
|
60 |
+
elif num_images < 100000:
|
61 |
+
return "10K<n<100K"
|
62 |
+
elif num_images < 1000000:
|
63 |
+
return "100K<n<1M"
|
64 |
+
else:
|
65 |
+
return "n>1M"
|
66 |
+
|
67 |
+
|
68 |
def process_pdfs(
|
69 |
pdf_files,
|
70 |
sample_size,
|
71 |
hf_repo,
|
72 |
+
create_zip,
|
73 |
+
private_repo,
|
74 |
oauth_token: gr.OAuthToken | None,
|
75 |
progress=gr.Progress(),
|
76 |
):
|
|
|
100 |
progress(0, desc="Starting PDF processing")
|
101 |
images, message = pdf_to_images(pdf_files, sample_size, images_dir)
|
102 |
|
103 |
+
zip_path = None
|
104 |
+
if create_zip:
|
105 |
+
# Create a zip file of the images
|
106 |
+
zip_path = os.path.join(temp_dir, "converted_images.zip")
|
107 |
+
with zipfile.ZipFile(zip_path, "w") as zipf:
|
108 |
+
progress(0, desc="Zipping images")
|
109 |
+
for image in progress.tqdm(images, desc="Zipping images"):
|
110 |
+
zipf.write(image, os.path.basename(image))
|
111 |
+
message += f"\nCreated zip file with {len(images)} images"
|
112 |
|
113 |
if hf_repo:
|
114 |
try:
|
|
|
116 |
hf_api.create_repo(
|
117 |
hf_repo,
|
118 |
repo_type="dataset",
|
119 |
+
private=private_repo,
|
120 |
)
|
121 |
hf_api.upload_folder(
|
122 |
folder_path=images_dir,
|
|
|
124 |
repo_type="dataset",
|
125 |
path_in_repo="images",
|
126 |
)
|
127 |
+
|
128 |
+
# Determine size category
|
129 |
+
size_category = get_size_category(len(images))
|
130 |
+
|
131 |
+
# Create DatasetCardData instance
|
132 |
+
card_data = DatasetCardData(
|
133 |
+
tags=["created-with-pdfs-to-page-images-converter", "pdf-to-image"],
|
134 |
+
size_categories=[size_category],
|
135 |
+
)
|
136 |
+
|
137 |
+
# Create and populate the dataset card
|
138 |
+
card = DatasetCard.from_template(
|
139 |
+
card_data,
|
140 |
+
template_path=None, # Use default template
|
141 |
+
hf_repo=hf_repo,
|
142 |
+
num_images=len(images),
|
143 |
+
num_pdfs=len(pdf_files),
|
144 |
+
sample_size=sample_size if sample_size > 0 else "All pages",
|
145 |
+
creation_date=datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
|
146 |
+
)
|
147 |
+
|
148 |
+
# Add our custom content to the card
|
149 |
+
card.text = DATASET_CARD_TEMPLATE.format(
|
150 |
+
hf_repo=hf_repo,
|
151 |
+
num_images=len(images),
|
152 |
+
num_pdfs=len(pdf_files),
|
153 |
+
sample_size=sample_size if sample_size > 0 else "All pages",
|
154 |
+
creation_date=datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
|
155 |
+
size_category=size_category,
|
156 |
+
)
|
157 |
+
|
158 |
+
repo_url = f"https://huggingface.co/datasets/{hf_repo}"
|
159 |
+
message += f"\nUploaded dataset card to Hugging Face repo: [{hf_repo}]({repo_url})"
|
160 |
+
|
161 |
+
card.push_to_hub(hf_repo)
|
162 |
except Exception as e:
|
163 |
message += f"\nFailed to upload to Hugging Face: {str(e)}"
|
164 |
|
|
|
197 |
placeholder="username/repo-name",
|
198 |
info="Enter the Hugging Face repository name in the format 'username/repo-name'",
|
199 |
)
|
200 |
+
with gr.Row():
|
201 |
+
create_zip = gr.Checkbox(label="Create ZIP file of images?", value=False)
|
202 |
+
private_repo = gr.Checkbox(label="Make repository private?", value=False)
|
203 |
with gr.Accordion("View converted images", open=False):
|
204 |
output_gallery = gr.Gallery(label="Converted Images")
|
205 |
status_text = gr.Markdown(label="Status")
|
|
|
208 |
submit_button = gr.Button("Convert PDFs to page images")
|
209 |
submit_button.click(
|
210 |
process_pdfs,
|
211 |
+
inputs=[pdf_files, sample_size, hf_repo, create_zip, private_repo],
|
212 |
outputs=[output_gallery, download_button, status_text],
|
213 |
)
|
214 |
|