File size: 3,627 Bytes
3ae192a
 
 
 
 
3a7ac79
 
 
3ae192a
3a7ac79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef005af
3a7ac79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef005af
 
 
 
 
 
 
 
 
 
bc4c15d
 
 
d38fb36
ef005af
3a7ac79
 
 
bc4c15d
 
 
 
ef005af
 
 
 
bc4c15d
 
 
 
3a7ac79
bc4c15d
3a7ac79
 
 
 
 
 
 
bc4c15d
ef005af
 
bc4c15d
 
3a7ac79
bc4c15d
3a7ac79
 
d17e4b7
 
3a7ac79
bc4c15d
d17e4b7
 
 
 
 
 
 
 
3a7ac79
 
ef005af
d17e4b7
 
ef005af
 
 
 
d17e4b7
3a7ac79
bc4c15d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import os

import gradio as gr
import numpy as np
import segmentation_models_pytorch as smp
import torch
import torch.nn.functional as F
from torchvision import transforms
from torchvision.utils import draw_segmentation_masks

config = {
    "downsize_res": 512,
    "batch_size": 6,
    "epochs": 30,
    "lr": 3e-4,
    "model_architecture": "Unet",
    "model_config": {
        "encoder_name": "resnet34",
        "encoder_weights": "imagenet",
        "in_channels": 3,
        "classes": 7,
    },
}

colors = [
    (0, 255, 255),
    (255, 255, 0),
    (255, 0, 255),
    (0, 255, 0),
    (0, 0, 255),
    (255, 255, 255),
    (0, 0, 0),
]


cp_path = "CP_epoch20.pth"
device = "cuda" if torch.cuda.is_available() else "cpu"

# load model
model_architecture = getattr(smp, config["model_architecture"])
model = model_architecture(**config["model_config"])
model.load_state_dict(torch.load(cp_path, map_location=torch.device(device)))
model.to(device)
model.eval()


# transforms
downsize_t = transforms.Resize(config["downsize_res"], antialias=True)
transform = transforms.Compose(
    [
        transforms.ToTensor(),
    ]
)


def label_to_onehot(mask: torch.Tensor, num_classes: int) -> torch.Tensor:
    """Transforms a tensor from label encoding to one hot encoding in boolean dtype"""

    dims_p = (2, 0, 1) if mask.ndim == 2 else (0, 3, 1, 2)
    return torch.permute(
        F.one_hot(mask.type(torch.long), num_classes=num_classes).type(torch.bool),
        dims_p,
    )


def get_overlay(image: torch.Tensor, preds: torch.Tensor, alpha: float) -> torch.Tensor:
    """Generates the segmentation ovelay for an satellite image"""

    masks = label_to_onehot(preds.squeeze(), 7)
    overlay = draw_segmentation_masks(image, masks=masks, alpha=alpha, colors=colors)
    return overlay


def hwc_to_chw(image_tensor: torch.Tensor) -> torch.Tensor:
    return torch.permute(image_tensor, (2, 0, 1))


def chw_to_hwc(image_tensor: torch.Tensor) -> torch.Tensor:
    return torch.permute(image_tensor, (1, 2, 0))


def segment(satellite_image: np.ndarray) -> tuple[np.ndarray, np.ndarray]:
    image_tensor = torch.from_numpy(satellite_image)
    image_tensor = hwc_to_chw(image_tensor)
    pil_image = transforms.functional.to_pil_image(image_tensor)
    # preprocess image
    X = transform(pil_image).unsqueeze(0)
    X = X.to(device)
    X_down = downsize_t(X)
    # forward pass
    logits = model(X_down)
    preds = torch.argmax(logits, 1).detach()
    # resize to evaluate with the original image
    preds = transforms.functional.resize(preds, X.shape[-2:], antialias=True)
    # get rbg formatted images
    segmentation_overlay = chw_to_hwc(get_overlay(image_tensor, preds, 0.2)).numpy()
    raw_segmentation = chw_to_hwc(
        get_overlay(torch.zeros_like(image_tensor), preds, 1)
    ).numpy()

    return raw_segmentation, segmentation_overlay


inputs = gr.inputs.Image(label="Input Image")
outputs = [gr.Image(label="Raw Segmentation"), gr.Image(label="Segmentation Overlay")]
images_dir = "sample_sat_images/"
examples = [f"{images_dir}/{image_id}" for image_id in os.listdir(images_dir)]
title = "Satellite Images Landcover Classification"
description = (
    "Upload a satellite image from your computer or select one from"
    " the examples to automatically. The model will segment the landcover"
    "  types from a preselected set of possible types."
)
article = open("article.md", "r").read()


iface = gr.Interface(
    segment,
    inputs,
    outputs,
    examples=examples,
    title=title,
    description=description,
    cache_examples=True,
    article=article,
)
iface.launch()