PawMatchAI / app.py
DawnC's picture
Update app.py
cda0efc verified
import os
import numpy as np
import torch
import torch.nn as nn
import gradio as gr
import time
import spaces
import timm
from torchvision.ops import nms, box_iou
import torch.nn.functional as F
from torchvision import transforms
from PIL import Image, ImageDraw, ImageFont, ImageFilter
from breed_health_info import breed_health_info
from breed_noise_info import breed_noise_info
from dog_database import get_dog_description
from scoring_calculation_system import UserPreferences
from recommendation_html_format import format_recommendation_html, get_breed_recommendations
from history_manager import UserHistoryManager
from search_history import create_history_tab, create_history_component
from styles import get_css_styles
from breed_detection import create_detection_tab
from breed_comparison import create_comparison_tab
from breed_recommendation import create_recommendation_tab
from html_templates import (
format_description_html,
format_single_dog_result,
format_multiple_breeds_result,
format_unknown_breed_message,
format_not_dog_message,
format_hint_html,
format_multi_dog_container,
format_breed_details_html,
get_color_scheme,
get_akc_breeds_link
)
from model_architecture import BaseModel, dog_breeds
from urllib.parse import quote
from ultralytics import YOLO
import asyncio
import traceback
history_manager = UserHistoryManager()
class ModelManager:
"""
Singleton class for managing model instances and device allocation
specifically designed for Hugging Face Spaces deployment.
"""
_instance = None
_initialized = False
_yolo_model = None
_breed_model = None
_device = None
def __new__(cls):
if cls._instance is None:
cls._instance = super().__new__(cls)
return cls._instance
def __init__(self):
if not ModelManager._initialized:
self._device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
ModelManager._initialized = True
@property
def device(self):
if self._device is None:
self._device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
return self._device
@property
def yolo_model(self):
if self._yolo_model is None:
self._yolo_model = YOLO('yolov8x.pt')
return self._yolo_model
@property
def breed_model(self):
if self._breed_model is None:
self._breed_model = BaseModel(
num_classes=len(dog_breeds),
device=self.device
).to(self.device)
checkpoint = torch.load(
'ConvNextV2Base_best_model.pth',
map_location=self.device
)
self._breed_model.load_state_dict(checkpoint['base_model'], strict=False)
self._breed_model.eval()
return self._breed_model
# Initialize model manager
model_manager = ModelManager()
def preprocess_image(image):
"""Preprocesses images for model input"""
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
return transform(image).unsqueeze(0)
@spaces.GPU
def predict_single_dog(image):
"""Predicts dog breed for a single image"""
image_tensor = preprocess_image(image).to(model_manager.device)
with torch.no_grad():
logits = model_manager.breed_model(image_tensor)[0]
probs = F.softmax(logits, dim=1)
top5_prob, top5_idx = torch.topk(probs, k=5)
breeds = [dog_breeds[idx.item()] for idx in top5_idx[0]]
probabilities = [prob.item() for prob in top5_prob[0]]
sum_probs = sum(probabilities[:3])
relative_probs = [f"{(prob/sum_probs * 100):.2f}%" for prob in probabilities[:3]]
return probabilities[0], breeds[:3], relative_probs
def enhanced_preprocess(image, is_standing=False, has_overlap=False):
"""
Enhanced image preprocessing function with special handling for different poses
and overlapping cases.
"""
target_size = 224
w, h = image.size
if is_standing:
if h > w * 1.5:
new_h = target_size
new_w = min(target_size, int(w * (target_size / h)))
new_w = max(new_w, int(target_size * 0.6))
elif has_overlap:
scale = min(target_size/w, target_size/h) * 0.95
new_w = int(w * scale)
new_h = int(h * scale)
else:
scale = min(target_size/w, target_size/h)
new_w = int(w * scale)
new_h = int(h * scale)
resized = image.resize((new_w, new_h), Image.Resampling.LANCZOS)
final_image = Image.new('RGB', (target_size, target_size), (240, 240, 240))
paste_x = (target_size - new_w) // 2
paste_y = (target_size - new_h) // 2
final_image.paste(resized, (paste_x, paste_y))
return final_image
@spaces.GPU
def detect_multiple_dogs(image, conf_threshold=0.3, iou_threshold=0.3):
"""
Enhanced multiple dog detection with improved bounding box handling and
intelligent boundary adjustments.
"""
results = model_manager.yolo_model(image, conf=conf_threshold, iou=iou_threshold)[0]
img_width, img_height = image.size
detected_boxes = []
# Phase 1: Initial detection and processing
for box in results.boxes:
if box.cls.item() == 16: # Dog class
xyxy = box.xyxy[0].tolist()
confidence = box.conf.item()
x1, y1, x2, y2 = map(int, xyxy)
w = x2 - x1
h = y2 - y1
detected_boxes.append({
'coords': [x1, y1, x2, y2],
'width': w,
'height': h,
'center_x': (x1 + x2) / 2,
'center_y': (y1 + y2) / 2,
'area': w * h,
'confidence': confidence,
'aspect_ratio': w / h if h != 0 else 1
})
if not detected_boxes:
return [(image, 1.0, [0, 0, img_width, img_height], False)]
# Phase 2: Analysis of detection relationships
avg_height = sum(box['height'] for box in detected_boxes) / len(detected_boxes)
avg_width = sum(box['width'] for box in detected_boxes) / len(detected_boxes)
avg_area = sum(box['area'] for box in detected_boxes) / len(detected_boxes)
def calculate_iou(box1, box2):
x1 = max(box1['coords'][0], box2['coords'][0])
y1 = max(box1['coords'][1], box2['coords'][1])
x2 = min(box1['coords'][2], box2['coords'][2])
y2 = min(box1['coords'][3], box2['coords'][3])
if x2 <= x1 or y2 <= y1:
return 0.0
intersection = (x2 - x1) * (y2 - y1)
area1 = box1['area']
area2 = box2['area']
return intersection / (area1 + area2 - intersection)
# Phase 3: Processing each detection
processed_boxes = []
overlap_threshold = 0.2
for i, box_info in enumerate(detected_boxes):
x1, y1, x2, y2 = box_info['coords']
w = box_info['width']
h = box_info['height']
center_x = box_info['center_x']
center_y = box_info['center_y']
# Check for overlaps
has_overlap = False
for j, other_box in enumerate(detected_boxes):
if i != j and calculate_iou(box_info, other_box) > overlap_threshold:
has_overlap = True
break
# Adjust expansion strategy
base_expansion = 0.03
max_expansion = 0.05
is_standing = h > 1.5 * w
is_sitting = 0.8 <= h/w <= 1.2
is_abnormal_size = (h * w) > (avg_area * 1.5) or (h * w) < (avg_area * 0.5)
if has_overlap:
h_expansion = w_expansion = base_expansion * 0.8
else:
if is_standing:
h_expansion = min(base_expansion * 1.2, max_expansion)
w_expansion = base_expansion
elif is_sitting:
h_expansion = w_expansion = base_expansion
else:
h_expansion = w_expansion = base_expansion * 0.9
# Position compensation
if center_x < img_width * 0.2 or center_x > img_width * 0.8:
w_expansion *= 0.9
if is_abnormal_size:
h_expansion *= 0.8
w_expansion *= 0.8
# Calculate final bounding box
expansion_w = w * w_expansion
expansion_h = h * h_expansion
new_x1 = max(0, center_x - (w + expansion_w)/2)
new_y1 = max(0, center_y - (h + expansion_h)/2)
new_x2 = min(img_width, center_x + (w + expansion_w)/2)
new_y2 = min(img_height, center_y + (h + expansion_h)/2)
# Crop and process image
cropped_image = image.crop((int(new_x1), int(new_y1),
int(new_x2), int(new_y2)))
processed_image = enhanced_preprocess(
cropped_image,
is_standing=is_standing,
has_overlap=has_overlap
)
processed_boxes.append((
processed_image,
box_info['confidence'],
[new_x1, new_y1, new_x2, new_y2],
True
))
return processed_boxes
@spaces.GPU
def predict(image):
"""
Main prediction function that handles both single and multiple dog detection.
Args:
image: PIL Image or numpy array
Returns:
tuple: (html_output, annotated_image, initial_state)
"""
if image is None:
return format_hint_html("Please upload an image to start."), None, None
try:
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
# 檢測圖片中的物體
dogs = detect_multiple_dogs(image)
color_scheme = get_color_scheme(len(dogs) == 1)
# 準備標註
annotated_image = image.copy()
draw = ImageDraw.Draw(annotated_image)
try:
font = ImageFont.truetype("arial.ttf", 24)
except:
font = ImageFont.load_default()
dogs_info = ""
# 處理每個檢測到的物體
for i, (cropped_image, detection_confidence, box, is_dog) in enumerate(dogs):
print(f"Predict processing - Object {i+1}:")
print(f" Is dog: {is_dog}")
print(f" Detection confidence: {detection_confidence:.4f}")
# 如果是狗且進行品種預測,在這裡也加入打印語句
if is_dog:
top1_prob, topk_breeds, relative_probs = predict_single_dog(cropped_image)
print(f" Breed prediction - Top probability: {top1_prob:.4f}")
print(f" Top breeds: {topk_breeds[:3]}")
color = color_scheme if len(dogs) == 1 else color_scheme[i % len(color_scheme)]
# 繪製框和標籤
draw.rectangle(box, outline=color, width=4)
label = f"Dog {i+1}" if is_dog else f"Object {i+1}"
label_bbox = draw.textbbox((0, 0), label, font=font)
label_width = label_bbox[2] - label_bbox[0]
label_height = label_bbox[3] - label_bbox[1]
# 繪製標籤背景和文字
label_x = box[0] + 5
label_y = box[1] + 5
draw.rectangle(
[label_x - 2, label_y - 2, label_x + label_width + 4, label_y + label_height + 4],
fill='white',
outline=color,
width=2
)
draw.text((label_x, label_y), label, fill=color, font=font)
try:
# 首先檢查是否為狗
if not is_dog:
dogs_info += format_not_dog_message(color, i+1)
continue
# 如果是狗,進行品種預測
top1_prob, topk_breeds, relative_probs = predict_single_dog(cropped_image)
combined_confidence = detection_confidence * top1_prob
# 根據信心度決定輸出格式
if combined_confidence < 0.15:
dogs_info += format_unknown_breed_message(color, i+1)
elif top1_prob >= 0.4:
breed = topk_breeds[0]
description = get_dog_description(breed)
if description is None:
description = {
"Name": breed,
"Size": "Unknown",
"Exercise Needs": "Unknown",
"Grooming Needs": "Unknown",
"Care Level": "Unknown",
"Good with Children": "Unknown",
"Description": f"Identified as {breed.replace('_', ' ')}"
}
dogs_info += format_single_dog_result(breed, description, color)
else:
dogs_info += format_multiple_breeds_result(
topk_breeds,
relative_probs,
color,
i+1,
lambda breed: get_dog_description(breed) or {
"Name": breed,
"Size": "Unknown",
"Exercise Needs": "Unknown",
"Grooming Needs": "Unknown",
"Care Level": "Unknown",
"Good with Children": "Unknown",
"Description": f"Identified as {breed.replace('_', ' ')}"
}
)
except Exception as e:
print(f"Error formatting results for dog {i+1}: {str(e)}")
dogs_info += format_unknown_breed_message(color, i+1)
# 包裝最終的HTML輸出
html_output = format_multi_dog_container(dogs_info)
# 準備初始狀態
initial_state = {
"dogs_info": dogs_info,
"image": annotated_image,
"is_multi_dog": len(dogs) > 1,
"html_output": html_output
}
return html_output, annotated_image, initial_state
except Exception as e:
error_msg = f"An error occurred: {str(e)}\n\nTraceback:\n{traceback.format_exc()}"
print(error_msg)
return format_hint_html(error_msg), None, None
def show_details_html(choice, previous_output, initial_state):
"""
Generate detailed HTML view for a selected breed.
Args:
choice: str, Selected breed option
previous_output: str, Previous HTML output
initial_state: dict, Current state information
Returns:
tuple: (html_output, gradio_update, updated_state)
"""
if not choice:
return previous_output, gr.update(visible=True), initial_state
try:
breed = choice.split("More about ")[-1]
description = get_dog_description(breed)
html_output = format_breed_details_html(description, breed)
# Update state
initial_state["current_description"] = html_output
initial_state["original_buttons"] = initial_state.get("buttons", [])
return html_output, gr.update(visible=True), initial_state
except Exception as e:
error_msg = f"An error occurred while showing details: {e}"
print(error_msg)
return format_hint_html(error_msg), gr.update(visible=True), initial_state
def main():
with gr.Blocks(css=get_css_styles()) as iface:
# Header HTML
gr.HTML("""
<header style='text-align: center; padding: 20px; margin-bottom: 20px;'>
<h1 style='font-size: 2.5em; margin-bottom: 10px; color: #2D3748;'>
🐾 PawMatch AI
</h1>
<h2 style='font-size: 1.2em; font-weight: normal; color: #4A5568; margin-top: 5px;'>
Your Smart Dog Breed Guide
</h2>
<div style='width: 50px; height: 3px; background: linear-gradient(90deg, #4299e1, #48bb78); margin: 15px auto;'></div>
<p style='color: #718096; font-size: 0.9em;'>
Powered by AI • Breed Recognition • Smart Matching • Companion Guide
</p>
</header>
""")
# 先創建歷史組件實例(但不創建標籤頁)
history_component = create_history_component()
with gr.Tabs():
# 1. 品種檢測標籤頁
example_images = [
'Border_Collie.jpg',
'Golden_Retriever.jpeg',
'Saint_Bernard.jpeg',
'Samoyed.jpeg',
'French_Bulldog.jpeg'
]
detection_components = create_detection_tab(predict, example_images)
# 2. 品種比較標籤頁
comparison_components = create_comparison_tab(
dog_breeds=dog_breeds,
get_dog_description=get_dog_description,
breed_health_info=breed_health_info,
breed_noise_info=breed_noise_info
)
# 3. 品種推薦標籤頁
recommendation_components = create_recommendation_tab(
UserPreferences=UserPreferences,
get_breed_recommendations=get_breed_recommendations,
format_recommendation_html=format_recommendation_html,
history_component=history_component
)
# 4. 最後創建歷史記錄標籤頁
create_history_tab(history_component)
# Footer
gr.HTML('''
<div style="
display: flex;
align-items: center;
justify-content: center;
gap: 20px;
padding: 20px 0;
">
<p style="
font-family: 'Arial', sans-serif;
font-size: 14px;
font-weight: 500;
letter-spacing: 2px;
background: linear-gradient(90deg, #555, #007ACC);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
margin: 0;
text-transform: uppercase;
display: inline-block;
">EXPLORE THE CODE →</p>
<a href="https://github.com/Eric-Chung-0511/Learning-Record/tree/main/Data%20Science%20Projects/PawMatchAI" style="text-decoration: none;">
<img src="https://img.shields.io/badge/GitHub-PawMatch_AI-007ACC?logo=github&style=for-the-badge">
</a>
</div>
''')
return iface
if __name__ == "__main__":
iface = main()
iface.launch()