Spaces:
Running
on
Zero
Running
on
Zero
Delete app.py
Browse files
app.py
DELETED
@@ -1,563 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import numpy as np
|
3 |
-
import torch
|
4 |
-
import torch.nn as nn
|
5 |
-
import gradio as gr
|
6 |
-
import time
|
7 |
-
import spaces
|
8 |
-
import timm
|
9 |
-
from torchvision.ops import nms, box_iou
|
10 |
-
import torch.nn.functional as F
|
11 |
-
from torchvision import transforms
|
12 |
-
from PIL import Image, ImageDraw, ImageFont, ImageFilter
|
13 |
-
from breed_health_info import breed_health_info
|
14 |
-
from breed_noise_info import breed_noise_info
|
15 |
-
from dog_database import get_dog_description
|
16 |
-
from scoring_calculation_system import UserPreferences
|
17 |
-
from recommendation_html_format import format_recommendation_html, get_breed_recommendations
|
18 |
-
from history_manager import UserHistoryManager
|
19 |
-
from search_history import create_history_tab, create_history_component
|
20 |
-
from styles import get_css_styles
|
21 |
-
from breed_detection import create_detection_tab
|
22 |
-
from breed_comparison import create_comparison_tab
|
23 |
-
from breed_recommendation import create_recommendation_tab
|
24 |
-
from html_templates import (
|
25 |
-
format_description_html,
|
26 |
-
format_single_dog_result,
|
27 |
-
format_multiple_breeds_result,
|
28 |
-
format_unknown_breed_message,
|
29 |
-
format_not_dog_message,
|
30 |
-
format_hint_html,
|
31 |
-
format_multi_dog_container,
|
32 |
-
format_breed_details_html,
|
33 |
-
get_color_scheme,
|
34 |
-
get_akc_breeds_link
|
35 |
-
)
|
36 |
-
from model_architecture import BaseModel, dog_breeds
|
37 |
-
from urllib.parse import quote
|
38 |
-
from ultralytics import YOLO
|
39 |
-
import asyncio
|
40 |
-
import traceback
|
41 |
-
|
42 |
-
history_manager = UserHistoryManager()
|
43 |
-
|
44 |
-
class ModelManager:
|
45 |
-
"""
|
46 |
-
Singleton class for managing model instances and device allocation
|
47 |
-
specifically designed for Hugging Face Spaces deployment.
|
48 |
-
"""
|
49 |
-
_instance = None
|
50 |
-
_initialized = False
|
51 |
-
_yolo_model = None
|
52 |
-
_breed_model = None
|
53 |
-
_device = None
|
54 |
-
|
55 |
-
def __new__(cls):
|
56 |
-
if cls._instance is None:
|
57 |
-
cls._instance = super().__new__(cls)
|
58 |
-
return cls._instance
|
59 |
-
|
60 |
-
def __init__(self):
|
61 |
-
if not ModelManager._initialized:
|
62 |
-
self._device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
63 |
-
ModelManager._initialized = True
|
64 |
-
|
65 |
-
@property
|
66 |
-
def device(self):
|
67 |
-
if self._device is None:
|
68 |
-
self._device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
69 |
-
return self._device
|
70 |
-
|
71 |
-
@property
|
72 |
-
def yolo_model(self):
|
73 |
-
if self._yolo_model is None:
|
74 |
-
self._yolo_model = YOLO('yolov8x.pt')
|
75 |
-
return self._yolo_model
|
76 |
-
|
77 |
-
@property
|
78 |
-
def breed_model(self):
|
79 |
-
if self._breed_model is None:
|
80 |
-
self._breed_model = BaseModel(
|
81 |
-
num_classes=len(dog_breeds),
|
82 |
-
device=self.device
|
83 |
-
).to(self.device)
|
84 |
-
|
85 |
-
checkpoint = torch.load(
|
86 |
-
'ConvNextV2Base_best_model.pth',
|
87 |
-
map_location=self.device
|
88 |
-
)
|
89 |
-
self._breed_model.load_state_dict(checkpoint['base_model'], strict=False)
|
90 |
-
self._breed_model.eval()
|
91 |
-
return self._breed_model
|
92 |
-
|
93 |
-
# Initialize model manager
|
94 |
-
model_manager = ModelManager()
|
95 |
-
|
96 |
-
def preprocess_image(image):
|
97 |
-
"""Preprocesses images for model input"""
|
98 |
-
if isinstance(image, np.ndarray):
|
99 |
-
image = Image.fromarray(image)
|
100 |
-
|
101 |
-
transform = transforms.Compose([
|
102 |
-
transforms.Resize((224, 224)),
|
103 |
-
transforms.ToTensor(),
|
104 |
-
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
105 |
-
])
|
106 |
-
|
107 |
-
return transform(image).unsqueeze(0)
|
108 |
-
|
109 |
-
@spaces.GPU
|
110 |
-
def predict_single_dog(image):
|
111 |
-
"""Predicts dog breed for a single image"""
|
112 |
-
image_tensor = preprocess_image(image).to(model_manager.device)
|
113 |
-
|
114 |
-
with torch.no_grad():
|
115 |
-
logits = model_manager.breed_model(image_tensor)[0]
|
116 |
-
probs = F.softmax(logits, dim=1)
|
117 |
-
|
118 |
-
top5_prob, top5_idx = torch.topk(probs, k=5)
|
119 |
-
breeds = [dog_breeds[idx.item()] for idx in top5_idx[0]]
|
120 |
-
probabilities = [prob.item() for prob in top5_prob[0]]
|
121 |
-
|
122 |
-
sum_probs = sum(probabilities[:3])
|
123 |
-
relative_probs = [f"{(prob/sum_probs * 100):.2f}%" for prob in probabilities[:3]]
|
124 |
-
|
125 |
-
return probabilities[0], breeds[:3], relative_probs
|
126 |
-
|
127 |
-
def enhanced_preprocess(image, is_standing=False, has_overlap=False):
|
128 |
-
"""
|
129 |
-
Enhanced image preprocessing function with special handling for different poses
|
130 |
-
and overlapping cases.
|
131 |
-
"""
|
132 |
-
target_size = 224
|
133 |
-
w, h = image.size
|
134 |
-
|
135 |
-
if is_standing:
|
136 |
-
if h > w * 1.5:
|
137 |
-
new_h = target_size
|
138 |
-
new_w = min(target_size, int(w * (target_size / h)))
|
139 |
-
new_w = max(new_w, int(target_size * 0.6))
|
140 |
-
elif has_overlap:
|
141 |
-
scale = min(target_size/w, target_size/h) * 0.95
|
142 |
-
new_w = int(w * scale)
|
143 |
-
new_h = int(h * scale)
|
144 |
-
else:
|
145 |
-
scale = min(target_size/w, target_size/h)
|
146 |
-
new_w = int(w * scale)
|
147 |
-
new_h = int(h * scale)
|
148 |
-
|
149 |
-
resized = image.resize((new_w, new_h), Image.Resampling.LANCZOS)
|
150 |
-
final_image = Image.new('RGB', (target_size, target_size), (240, 240, 240))
|
151 |
-
paste_x = (target_size - new_w) // 2
|
152 |
-
paste_y = (target_size - new_h) // 2
|
153 |
-
final_image.paste(resized, (paste_x, paste_y))
|
154 |
-
|
155 |
-
return final_image
|
156 |
-
|
157 |
-
@spaces.GPU
|
158 |
-
def detect_multiple_dogs(image, conf_threshold=0.3, iou_threshold=0.3):
|
159 |
-
"""
|
160 |
-
Enhanced multiple dog detection with improved bounding box handling and
|
161 |
-
intelligent boundary adjustments.
|
162 |
-
"""
|
163 |
-
results = model_manager.yolo_model(image, conf=conf_threshold, iou=iou_threshold)[0]
|
164 |
-
img_width, img_height = image.size
|
165 |
-
detected_boxes = []
|
166 |
-
|
167 |
-
# Phase 1: Initial detection and processing
|
168 |
-
for box in results.boxes:
|
169 |
-
if box.cls.item() == 16: # Dog class
|
170 |
-
xyxy = box.xyxy[0].tolist()
|
171 |
-
confidence = box.conf.item()
|
172 |
-
x1, y1, x2, y2 = map(int, xyxy)
|
173 |
-
w = x2 - x1
|
174 |
-
h = y2 - y1
|
175 |
-
|
176 |
-
detected_boxes.append({
|
177 |
-
'coords': [x1, y1, x2, y2],
|
178 |
-
'width': w,
|
179 |
-
'height': h,
|
180 |
-
'center_x': (x1 + x2) / 2,
|
181 |
-
'center_y': (y1 + y2) / 2,
|
182 |
-
'area': w * h,
|
183 |
-
'confidence': confidence,
|
184 |
-
'aspect_ratio': w / h if h != 0 else 1
|
185 |
-
})
|
186 |
-
|
187 |
-
if not detected_boxes:
|
188 |
-
return [(image, 1.0, [0, 0, img_width, img_height], False)]
|
189 |
-
|
190 |
-
# Phase 2: Analysis of detection relationships
|
191 |
-
avg_height = sum(box['height'] for box in detected_boxes) / len(detected_boxes)
|
192 |
-
avg_width = sum(box['width'] for box in detected_boxes) / len(detected_boxes)
|
193 |
-
avg_area = sum(box['area'] for box in detected_boxes) / len(detected_boxes)
|
194 |
-
|
195 |
-
def calculate_iou(box1, box2):
|
196 |
-
x1 = max(box1['coords'][0], box2['coords'][0])
|
197 |
-
y1 = max(box1['coords'][1], box2['coords'][1])
|
198 |
-
x2 = min(box1['coords'][2], box2['coords'][2])
|
199 |
-
y2 = min(box1['coords'][3], box2['coords'][3])
|
200 |
-
|
201 |
-
if x2 <= x1 or y2 <= y1:
|
202 |
-
return 0.0
|
203 |
-
|
204 |
-
intersection = (x2 - x1) * (y2 - y1)
|
205 |
-
area1 = box1['area']
|
206 |
-
area2 = box2['area']
|
207 |
-
return intersection / (area1 + area2 - intersection)
|
208 |
-
|
209 |
-
# Phase 3: Processing each detection
|
210 |
-
processed_boxes = []
|
211 |
-
overlap_threshold = 0.2
|
212 |
-
|
213 |
-
for i, box_info in enumerate(detected_boxes):
|
214 |
-
x1, y1, x2, y2 = box_info['coords']
|
215 |
-
w = box_info['width']
|
216 |
-
h = box_info['height']
|
217 |
-
center_x = box_info['center_x']
|
218 |
-
center_y = box_info['center_y']
|
219 |
-
|
220 |
-
# Check for overlaps
|
221 |
-
has_overlap = False
|
222 |
-
for j, other_box in enumerate(detected_boxes):
|
223 |
-
if i != j and calculate_iou(box_info, other_box) > overlap_threshold:
|
224 |
-
has_overlap = True
|
225 |
-
break
|
226 |
-
|
227 |
-
# Adjust expansion strategy
|
228 |
-
base_expansion = 0.03
|
229 |
-
max_expansion = 0.05
|
230 |
-
|
231 |
-
is_standing = h > 1.5 * w
|
232 |
-
is_sitting = 0.8 <= h/w <= 1.2
|
233 |
-
is_abnormal_size = (h * w) > (avg_area * 1.5) or (h * w) < (avg_area * 0.5)
|
234 |
-
|
235 |
-
if has_overlap:
|
236 |
-
h_expansion = w_expansion = base_expansion * 0.8
|
237 |
-
else:
|
238 |
-
if is_standing:
|
239 |
-
h_expansion = min(base_expansion * 1.2, max_expansion)
|
240 |
-
w_expansion = base_expansion
|
241 |
-
elif is_sitting:
|
242 |
-
h_expansion = w_expansion = base_expansion
|
243 |
-
else:
|
244 |
-
h_expansion = w_expansion = base_expansion * 0.9
|
245 |
-
|
246 |
-
# Position compensation
|
247 |
-
if center_x < img_width * 0.2 or center_x > img_width * 0.8:
|
248 |
-
w_expansion *= 0.9
|
249 |
-
|
250 |
-
if is_abnormal_size:
|
251 |
-
h_expansion *= 0.8
|
252 |
-
w_expansion *= 0.8
|
253 |
-
|
254 |
-
# Calculate final bounding box
|
255 |
-
expansion_w = w * w_expansion
|
256 |
-
expansion_h = h * h_expansion
|
257 |
-
|
258 |
-
new_x1 = max(0, center_x - (w + expansion_w)/2)
|
259 |
-
new_y1 = max(0, center_y - (h + expansion_h)/2)
|
260 |
-
new_x2 = min(img_width, center_x + (w + expansion_w)/2)
|
261 |
-
new_y2 = min(img_height, center_y + (h + expansion_h)/2)
|
262 |
-
|
263 |
-
# Crop and process image
|
264 |
-
cropped_image = image.crop((int(new_x1), int(new_y1),
|
265 |
-
int(new_x2), int(new_y2)))
|
266 |
-
|
267 |
-
processed_image = enhanced_preprocess(
|
268 |
-
cropped_image,
|
269 |
-
is_standing=is_standing,
|
270 |
-
has_overlap=has_overlap
|
271 |
-
)
|
272 |
-
|
273 |
-
processed_boxes.append((
|
274 |
-
processed_image,
|
275 |
-
box_info['confidence'],
|
276 |
-
[new_x1, new_y1, new_x2, new_y2],
|
277 |
-
True
|
278 |
-
))
|
279 |
-
|
280 |
-
return processed_boxes
|
281 |
-
|
282 |
-
@spaces.GPU
|
283 |
-
def predict(image):
|
284 |
-
"""
|
285 |
-
Main prediction function that handles both single and multiple dog detection.
|
286 |
-
Args:
|
287 |
-
image: PIL Image or numpy array
|
288 |
-
Returns:
|
289 |
-
tuple: (html_output, annotated_image, initial_state)
|
290 |
-
"""
|
291 |
-
if image is None:
|
292 |
-
return format_hint_html("Please upload an image to start."), None, None
|
293 |
-
|
294 |
-
try:
|
295 |
-
if isinstance(image, np.ndarray):
|
296 |
-
image = Image.fromarray(image)
|
297 |
-
|
298 |
-
# 檢測圖片中的物體
|
299 |
-
dogs = detect_multiple_dogs(image)
|
300 |
-
color_scheme = get_color_scheme(len(dogs) == 1)
|
301 |
-
|
302 |
-
# 準備標註
|
303 |
-
annotated_image = image.copy()
|
304 |
-
draw = ImageDraw.Draw(annotated_image)
|
305 |
-
|
306 |
-
try:
|
307 |
-
font = ImageFont.truetype("arial.ttf", 24)
|
308 |
-
except:
|
309 |
-
font = ImageFont.load_default()
|
310 |
-
|
311 |
-
dogs_info = ""
|
312 |
-
|
313 |
-
# 處理每個檢測到的物體
|
314 |
-
for i, (cropped_image, detection_confidence, box, is_dog) in enumerate(dogs):
|
315 |
-
print(f"Predict processing - Object {i+1}:")
|
316 |
-
print(f" Is dog: {is_dog}")
|
317 |
-
print(f" Detection confidence: {detection_confidence:.4f}")
|
318 |
-
|
319 |
-
# 如果是狗且進行品種預測,在這裡也加入打印語句
|
320 |
-
if is_dog:
|
321 |
-
top1_prob, topk_breeds, relative_probs = predict_single_dog(cropped_image)
|
322 |
-
print(f" Breed prediction - Top probability: {top1_prob:.4f}")
|
323 |
-
print(f" Top breeds: {topk_breeds[:3]}")
|
324 |
-
color = color_scheme if len(dogs) == 1 else color_scheme[i % len(color_scheme)]
|
325 |
-
|
326 |
-
# 繪製框和標籤
|
327 |
-
draw.rectangle(box, outline=color, width=4)
|
328 |
-
label = f"Dog {i+1}" if is_dog else f"Object {i+1}"
|
329 |
-
label_bbox = draw.textbbox((0, 0), label, font=font)
|
330 |
-
label_width = label_bbox[2] - label_bbox[0]
|
331 |
-
label_height = label_bbox[3] - label_bbox[1]
|
332 |
-
|
333 |
-
# 繪製標籤背景和文字
|
334 |
-
label_x = box[0] + 5
|
335 |
-
label_y = box[1] + 5
|
336 |
-
draw.rectangle(
|
337 |
-
[label_x - 2, label_y - 2, label_x + label_width + 4, label_y + label_height + 4],
|
338 |
-
fill='white',
|
339 |
-
outline=color,
|
340 |
-
width=2
|
341 |
-
)
|
342 |
-
draw.text((label_x, label_y), label, fill=color, font=font)
|
343 |
-
|
344 |
-
try:
|
345 |
-
# 首先檢查是否為狗
|
346 |
-
if not is_dog:
|
347 |
-
dogs_info += format_not_dog_message(color, i+1)
|
348 |
-
continue
|
349 |
-
|
350 |
-
# 如果是狗,進行品種預測
|
351 |
-
top1_prob, topk_breeds, relative_probs = predict_single_dog(cropped_image)
|
352 |
-
combined_confidence = detection_confidence * top1_prob
|
353 |
-
|
354 |
-
# 根據信心度決定輸出格式
|
355 |
-
if combined_confidence < 0.15:
|
356 |
-
dogs_info += format_unknown_breed_message(color, i+1)
|
357 |
-
elif top1_prob >= 0.4:
|
358 |
-
breed = topk_breeds[0]
|
359 |
-
description = get_dog_description(breed)
|
360 |
-
if description is None:
|
361 |
-
description = {
|
362 |
-
"Name": breed,
|
363 |
-
"Size": "Unknown",
|
364 |
-
"Exercise Needs": "Unknown",
|
365 |
-
"Grooming Needs": "Unknown",
|
366 |
-
"Care Level": "Unknown",
|
367 |
-
"Good with Children": "Unknown",
|
368 |
-
"Description": f"Identified as {breed.replace('_', ' ')}"
|
369 |
-
}
|
370 |
-
dogs_info += format_single_dog_result(breed, description, color)
|
371 |
-
else:
|
372 |
-
dogs_info += format_multiple_breeds_result(
|
373 |
-
topk_breeds,
|
374 |
-
relative_probs,
|
375 |
-
color,
|
376 |
-
i+1,
|
377 |
-
lambda breed: get_dog_description(breed) or {
|
378 |
-
"Name": breed,
|
379 |
-
"Size": "Unknown",
|
380 |
-
"Exercise Needs": "Unknown",
|
381 |
-
"Grooming Needs": "Unknown",
|
382 |
-
"Care Level": "Unknown",
|
383 |
-
"Good with Children": "Unknown",
|
384 |
-
"Description": f"Identified as {breed.replace('_', ' ')}"
|
385 |
-
}
|
386 |
-
)
|
387 |
-
except Exception as e:
|
388 |
-
print(f"Error formatting results for dog {i+1}: {str(e)}")
|
389 |
-
dogs_info += format_unknown_breed_message(color, i+1)
|
390 |
-
|
391 |
-
# 包裝最終的HTML輸出
|
392 |
-
html_output = format_multi_dog_container(dogs_info)
|
393 |
-
|
394 |
-
# 準備初始狀態
|
395 |
-
initial_state = {
|
396 |
-
"dogs_info": dogs_info,
|
397 |
-
"image": annotated_image,
|
398 |
-
"is_multi_dog": len(dogs) > 1,
|
399 |
-
"html_output": html_output
|
400 |
-
}
|
401 |
-
|
402 |
-
return html_output, annotated_image, initial_state
|
403 |
-
|
404 |
-
except Exception as e:
|
405 |
-
error_msg = f"An error occurred: {str(e)}\n\nTraceback:\n{traceback.format_exc()}"
|
406 |
-
print(error_msg)
|
407 |
-
return format_hint_html(error_msg), None, None
|
408 |
-
|
409 |
-
|
410 |
-
def show_details_html(choice, previous_output, initial_state):
|
411 |
-
"""
|
412 |
-
Generate detailed HTML view for a selected breed.
|
413 |
-
|
414 |
-
Args:
|
415 |
-
choice: str, Selected breed option
|
416 |
-
previous_output: str, Previous HTML output
|
417 |
-
initial_state: dict, Current state information
|
418 |
-
|
419 |
-
Returns:
|
420 |
-
tuple: (html_output, gradio_update, updated_state)
|
421 |
-
"""
|
422 |
-
if not choice:
|
423 |
-
return previous_output, gr.update(visible=True), initial_state
|
424 |
-
|
425 |
-
try:
|
426 |
-
breed = choice.split("More about ")[-1]
|
427 |
-
description = get_dog_description(breed)
|
428 |
-
html_output = format_breed_details_html(description, breed)
|
429 |
-
|
430 |
-
# Update state
|
431 |
-
initial_state["current_description"] = html_output
|
432 |
-
initial_state["original_buttons"] = initial_state.get("buttons", [])
|
433 |
-
|
434 |
-
return html_output, gr.update(visible=True), initial_state
|
435 |
-
|
436 |
-
except Exception as e:
|
437 |
-
error_msg = f"An error occurred while showing details: {e}"
|
438 |
-
print(error_msg)
|
439 |
-
return format_hint_html(error_msg), gr.update(visible=True), initial_state
|
440 |
-
|
441 |
-
|
442 |
-
def get_pwa_html():
|
443 |
-
return """
|
444 |
-
<!DOCTYPE html>
|
445 |
-
<html lang="en">
|
446 |
-
<head>
|
447 |
-
<meta charset="UTF-8" />
|
448 |
-
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
449 |
-
<meta name="apple-mobile-web-app-capable" content="yes">
|
450 |
-
<meta name="apple-mobile-web-app-status-bar-style" content="black">
|
451 |
-
<meta name="theme-color" content="#4299e1">
|
452 |
-
|
453 |
-
<link rel="manifest" href="manifest.json">
|
454 |
-
<link rel="apple-touch-icon" href="assets/icon-192.png">
|
455 |
-
|
456 |
-
<script>
|
457 |
-
// PWA: Service Worker 註冊
|
458 |
-
document.addEventListener('DOMContentLoaded', function() {
|
459 |
-
if ('serviceWorker' in navigator) {
|
460 |
-
const swURL = new URL('service-worker.js', window.location.origin + window.location.pathname).href;
|
461 |
-
navigator.serviceWorker.register(swURL)
|
462 |
-
.then(function(registration) {
|
463 |
-
console.log('Service Worker 註冊成功,範圍:', registration.scope);
|
464 |
-
})
|
465 |
-
.catch(function(error) {
|
466 |
-
console.log('Service Worker 註冊失敗:', error.message);
|
467 |
-
});
|
468 |
-
}
|
469 |
-
});
|
470 |
-
</script>
|
471 |
-
</head>
|
472 |
-
<body>
|
473 |
-
"""
|
474 |
-
|
475 |
-
def main():
|
476 |
-
with gr.Blocks(css=get_css_styles()) as iface:
|
477 |
-
|
478 |
-
gr.HTML(get_pwa_html())
|
479 |
-
|
480 |
-
# Header HTML
|
481 |
-
gr.HTML("""
|
482 |
-
<header style='text-align: center; padding: 20px; margin-bottom: 20px;'>
|
483 |
-
<h1 style='font-size: 2.5em; margin-bottom: 10px; color: #2D3748;'>
|
484 |
-
🐾 PawMatch AI
|
485 |
-
</h1>
|
486 |
-
<h2 style='font-size: 1.2em; font-weight: normal; color: #4A5568; margin-top: 5px;'>
|
487 |
-
Your Smart Dog Breed Guide
|
488 |
-
</h2>
|
489 |
-
<div style='width: 50px; height: 3px; background: linear-gradient(90deg, #4299e1, #48bb78); margin: 15px auto;'></div>
|
490 |
-
<p style='color: #718096; font-size: 0.9em;'>
|
491 |
-
Powered by AI • Breed Recognition • Smart Matching • Companion Guide
|
492 |
-
</p>
|
493 |
-
</header>
|
494 |
-
""")
|
495 |
-
|
496 |
-
# 先創建歷史組件實例(但不創建標籤頁)
|
497 |
-
history_component = create_history_component()
|
498 |
-
|
499 |
-
with gr.Tabs():
|
500 |
-
# 1. 品種檢測標籤頁
|
501 |
-
example_images = [
|
502 |
-
'Border_Collie.jpg',
|
503 |
-
'Golden_Retriever.jpeg',
|
504 |
-
'Saint_Bernard.jpeg',
|
505 |
-
'Samoyed.jpeg',
|
506 |
-
'French_Bulldog.jpeg'
|
507 |
-
]
|
508 |
-
detection_components = create_detection_tab(predict, example_images)
|
509 |
-
|
510 |
-
# 2. 品種比較標籤頁
|
511 |
-
comparison_components = create_comparison_tab(
|
512 |
-
dog_breeds=dog_breeds,
|
513 |
-
get_dog_description=get_dog_description,
|
514 |
-
breed_health_info=breed_health_info,
|
515 |
-
breed_noise_info=breed_noise_info
|
516 |
-
)
|
517 |
-
|
518 |
-
# 3. 品種推薦標籤頁
|
519 |
-
recommendation_components = create_recommendation_tab(
|
520 |
-
UserPreferences=UserPreferences,
|
521 |
-
get_breed_recommendations=get_breed_recommendations,
|
522 |
-
format_recommendation_html=format_recommendation_html,
|
523 |
-
history_component=history_component
|
524 |
-
)
|
525 |
-
|
526 |
-
|
527 |
-
# 4. 最後創建歷史記錄標籤頁
|
528 |
-
create_history_tab(history_component)
|
529 |
-
|
530 |
-
# Footer
|
531 |
-
gr.HTML('''
|
532 |
-
<div style="
|
533 |
-
display: flex;
|
534 |
-
align-items: center;
|
535 |
-
justify-content: center;
|
536 |
-
gap: 20px;
|
537 |
-
padding: 20px 0;
|
538 |
-
">
|
539 |
-
<p style="
|
540 |
-
font-family: 'Arial', sans-serif;
|
541 |
-
font-size: 14px;
|
542 |
-
font-weight: 500;
|
543 |
-
letter-spacing: 2px;
|
544 |
-
background: linear-gradient(90deg, #555, #007ACC);
|
545 |
-
-webkit-background-clip: text;
|
546 |
-
-webkit-text-fill-color: transparent;
|
547 |
-
margin: 0;
|
548 |
-
text-transform: uppercase;
|
549 |
-
display: inline-block;
|
550 |
-
">EXPLORE THE CODE →</p>
|
551 |
-
<a href="https://github.com/Eric-Chung-0511/Learning-Record/tree/main/Data%20Science%20Projects/PawMatchAI" style="text-decoration: none;">
|
552 |
-
<img src="https://img.shields.io/badge/GitHub-PawMatch_AI-007ACC?logo=github&style=for-the-badge">
|
553 |
-
</a>
|
554 |
-
</div>
|
555 |
-
''')
|
556 |
-
|
557 |
-
gr.HTML("</body></html>")
|
558 |
-
|
559 |
-
return iface
|
560 |
-
|
561 |
-
if __name__ == "__main__":
|
562 |
-
iface = main()
|
563 |
-
iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|