DawnC commited on
Commit
d2d4164
1 Parent(s): 15a0130

Update breed_detection.py

Browse files
Files changed (1) hide show
  1. breed_detection.py +143 -48
breed_detection.py CHANGED
@@ -2,56 +2,151 @@ import re
2
  import gradio as gr
3
  from PIL import Image
4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
  def create_detection_tab(predict_fn, example_images):
6
- with gr.TabItem("Breed Detection"):
7
- gr.HTML("""
8
- <div style='
9
- text-align: center;
10
- padding: 20px 0;
11
- margin: 15px 0;
12
- background: linear-gradient(to right, rgba(66, 153, 225, 0.1), rgba(72, 187, 120, 0.1));
13
- border-radius: 10px;
14
- '>
15
- <p style='
16
- font-size: 1.2em;
17
- margin: 0;
18
- padding: 0 20px;
19
- line-height: 1.5;
20
- background: linear-gradient(90deg, #4299e1, #48bb78);
21
- -webkit-background-clip: text;
22
- -webkit-text-fill-color: transparent;
23
- font-weight: 600;
24
- '>
25
- Upload a picture of a dog, and the model will predict its breed and provide detailed information!
26
- </p>
27
- <p style='
28
- font-size: 0.9em;
29
- color: #666;
30
- margin-top: 8px;
31
- padding: 0 20px;
32
- '>
33
- Note: The model's predictions may not always be 100% accurate, and it is recommended to use the results as a reference.
34
- </p>
35
- </div>
36
- """)
37
 
38
- with gr.Row():
39
- input_image = gr.Image(label="Upload a dog image", type="pil")
40
- output_image = gr.Image(label="Annotated Image")
41
-
42
- output = gr.HTML(label="Prediction Results")
43
- initial_state = gr.State()
44
-
45
- input_image.change(
46
- predict_fn,
47
- inputs=input_image,
48
- outputs=[output, output_image, initial_state]
49
- )
50
-
51
- gr.Examples(
52
- examples=example_images,
53
- inputs=input_image
54
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55
 
56
  return {
57
  'input_image': input_image,
 
2
  import gradio as gr
3
  from PIL import Image
4
 
5
+ # def create_detection_tab(predict_fn, example_images):
6
+ # with gr.TabItem("Breed Detection"):
7
+ # gr.HTML("""
8
+ # <div style='
9
+ # text-align: center;
10
+ # padding: 20px 0;
11
+ # margin: 15px 0;
12
+ # background: linear-gradient(to right, rgba(66, 153, 225, 0.1), rgba(72, 187, 120, 0.1));
13
+ # border-radius: 10px;
14
+ # '>
15
+ # <p style='
16
+ # font-size: 1.2em;
17
+ # margin: 0;
18
+ # padding: 0 20px;
19
+ # line-height: 1.5;
20
+ # background: linear-gradient(90deg, #4299e1, #48bb78);
21
+ # -webkit-background-clip: text;
22
+ # -webkit-text-fill-color: transparent;
23
+ # font-weight: 600;
24
+ # '>
25
+ # Upload a picture of a dog, and the model will predict its breed and provide detailed information!
26
+ # </p>
27
+ # <p style='
28
+ # font-size: 0.9em;
29
+ # color: #666;
30
+ # margin-top: 8px;
31
+ # padding: 0 20px;
32
+ # '>
33
+ # Note: The model's predictions may not always be 100% accurate, and it is recommended to use the results as a reference.
34
+ # </p>
35
+ # </div>
36
+ # """)
37
+
38
+ # with gr.Row():
39
+ # input_image = gr.Image(label="Upload a dog image", type="pil")
40
+ # output_image = gr.Image(label="Annotated Image")
41
+
42
+ # output = gr.HTML(label="Prediction Results")
43
+ # initial_state = gr.State()
44
+
45
+ # input_image.change(
46
+ # predict_fn,
47
+ # inputs=input_image,
48
+ # outputs=[output, output_image, initial_state]
49
+ # )
50
+
51
+ # gr.Examples(
52
+ # examples=example_images,
53
+ # inputs=input_image
54
+ # )
55
+
56
+ # return {
57
+ # 'input_image': input_image,
58
+ # 'output_image': output_image,
59
+ # 'output': output,
60
+ # 'initial_state': initial_state
61
+ # }
62
+
63
+
64
  def create_detection_tab(predict_fn, example_images):
65
+ # 首先定義CSS樣式
66
+ custom_css = """
67
+ /* 標籤樣式 */
68
+ .tab-nav {
69
+ padding: 0 !important;
70
+ margin-bottom: 20px !important;
71
+ border-bottom: 1px solid #e2e8f0 !important;
72
+ }
73
+
74
+ /* 所有標籤的基本樣式 */
75
+ .tab-nav button {
76
+ padding: 12px 16px !important;
77
+ margin: 0 8px !important;
78
+ font-size: 1.1em !important;
79
+ font-weight: 500 !important;
80
+ transition: all 0.3s ease !important;
81
+ border-bottom: 2px solid transparent !important;
82
+ background: none !important;
83
+ position: relative !important;
84
+ }
 
 
 
 
 
 
 
 
 
 
 
85
 
86
+ /* 被選中的標籤樣式 */
87
+ .tab-nav button.selected {
88
+ color: #4299e1 !important;
89
+ border-bottom: 2px solid #4299e1 !important;
90
+ background: linear-gradient(to bottom, rgba(66, 153, 225, 0.1), transparent) !important;
91
+ }
92
+
93
+ /* hover 效果 */
94
+ .tab-nav button:hover {
95
+ color: #4299e1 !important;
96
+ background: rgba(66, 153, 225, 0.05) !important;
97
+ }
98
+ """
99
+
100
+ with gr.Blocks(css=custom_css) as detection_tab:
101
+ with gr.TabItem("Breed Detection"):
102
+ gr.HTML("""
103
+ <div style='
104
+ text-align: center;
105
+ padding: 20px 0;
106
+ margin: 15px 0;
107
+ background: linear-gradient(to right, rgba(66, 153, 225, 0.1), rgba(72, 187, 120, 0.1));
108
+ border-radius: 10px;
109
+ '>
110
+ <p style='
111
+ font-size: 1.2em;
112
+ margin: 0;
113
+ padding: 0 20px;
114
+ line-height: 1.5;
115
+ background: linear-gradient(90deg, #4299e1, #48bb78);
116
+ -webkit-background-clip: text;
117
+ -webkit-text-fill-color: transparent;
118
+ font-weight: 600;
119
+ '>
120
+ Upload a picture of a dog, and the model will predict its breed and provide detailed information!
121
+ </p>
122
+ <p style='
123
+ font-size: 0.9em;
124
+ color: #666;
125
+ margin-top: 8px;
126
+ padding: 0 20px;
127
+ '>
128
+ Note: The model's predictions may not always be 100% accurate, and it is recommended to use the results as a reference.
129
+ </p>
130
+ </div>
131
+ """)
132
+
133
+ with gr.Row():
134
+ input_image = gr.Image(label="Upload a dog image", type="pil")
135
+ output_image = gr.Image(label="Annotated Image")
136
+
137
+ output = gr.HTML(label="Prediction Results")
138
+ initial_state = gr.State()
139
+
140
+ input_image.change(
141
+ predict_fn,
142
+ inputs=input_image,
143
+ outputs=[output, output_image, initial_state]
144
+ )
145
+
146
+ gr.Examples(
147
+ examples=example_images,
148
+ inputs=input_image
149
+ )
150
 
151
  return {
152
  'input_image': input_image,