Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import random | |
import spaces | |
import gradio as gr | |
import numpy as np | |
import PIL.Image | |
import torch | |
import torchvision.transforms.functional as TF | |
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL | |
from diffusers import DDIMScheduler, EulerAncestralDiscreteScheduler | |
from controlnet_aux import PidiNetDetector, HEDdetector | |
from diffusers.utils import load_image | |
from huggingface_hub import HfApi, snapshot_download | |
from pathlib import Path | |
from PIL import Image, ImageOps | |
import cv2 | |
from gradio_imageslider import ImageSlider | |
js_func = """ | |
function refresh() { | |
const url = new URL(window.location); | |
} | |
""" | |
def nms(x, t, s): | |
x = cv2.GaussianBlur(x.astype(np.float32), (0, 0), s) | |
f1 = np.array([[0, 0, 0], [1, 1, 1], [0, 0, 0]], dtype=np.uint8) | |
f2 = np.array([[0, 1, 0], [0, 1, 0], [0, 1, 0]], dtype=np.uint8) | |
f3 = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]], dtype=np.uint8) | |
f4 = np.array([[0, 0, 1], [0, 1, 0], [1, 0, 0]], dtype=np.uint8) | |
y = np.zeros_like(x) | |
for f in [f1, f2, f3, f4]: | |
np.putmask(y, cv2.dilate(x, kernel=f) == x, x) | |
z = np.zeros_like(y, dtype=np.uint8) | |
z[y > t] = 255 | |
return z | |
def HWC3(x): | |
assert x.dtype == np.uint8 | |
if x.ndim == 2: | |
x = x[:, :, None] | |
assert x.ndim == 3 | |
H, W, C = x.shape | |
assert C == 1 or C == 3 or C == 4 | |
if C == 3: | |
return x | |
if C == 1: | |
return np.concatenate([x, x, x], axis=2) | |
if C == 4: | |
color = x[:, :, 0:3].astype(np.float32) | |
alpha = x[:, :, 3:4].astype(np.float32) / 255.0 | |
y = color * alpha + 255.0 * (1.0 - alpha) | |
y = y.clip(0, 255).astype(np.uint8) | |
return y | |
DESCRIPTION = '''''' | |
if not torch.cuda.is_available(): | |
DESCRIPTION += "" | |
style_list = [ | |
# ... (style list remains the same) | |
] | |
styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list} | |
STYLE_NAMES = list(styles.keys()) | |
DEFAULT_STYLE_NAME = "(No style)" | |
def apply_style(style_name: str, positive: str, negative: str = "") -> tuple[str, str]: | |
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME]) | |
return p.replace("{prompt}", positive), n + negative | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
eulera_scheduler = EulerAncestralDiscreteScheduler.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", subfolder="scheduler") | |
# Download the model files | |
ckpt_dir_pony = snapshot_download(repo_id="John6666/pony-realism-v21main-sdxl") | |
ckpt_dir_cyber = snapshot_download(repo_id="John6666/cyberrealistic-pony-v61-sdxl") | |
ckpt_dir_stallion = snapshot_download(repo_id="John6666/stallion-dreams-pony-realistic-v1-sdxl") | |
# Load the models | |
vae_pony = AutoencoderKL.from_pretrained(os.path.join(ckpt_dir_pony, "vae"), torch_dtype=torch.float16) | |
vae_cyber = AutoencoderKL.from_pretrained(os.path.join(ckpt_dir_cyber, "vae"), torch_dtype=torch.float16) | |
vae_stallion = AutoencoderKL.from_pretrained(os.path.join(ckpt_dir_stallion, "vae"), torch_dtype=torch.float16) | |
controlnet_pony = ControlNetModel.from_pretrained("xinsir/controlnet-union-sdxl-1.0", torch_dtype=torch.float16) | |
controlnet_cyber = ControlNetModel.from_pretrained("xinsir/controlnet-union-sdxl-1.0", torch_dtype=torch.float16) | |
controlnet_stallion = ControlNetModel.from_pretrained("xinsir/controlnet-union-sdxl-1.0", torch_dtype=torch.float16) | |
pipe_pony = StableDiffusionXLControlNetPipeline.from_pretrained( | |
ckpt_dir_pony, controlnet=controlnet_pony, vae=vae_pony, torch_dtype=torch.float16, scheduler=eulera_scheduler | |
) | |
pipe_cyber = StableDiffusionXLControlNetPipeline.from_pretrained( | |
ckpt_dir_cyber, controlnet=controlnet_cyber, vae=vae_cyber, torch_dtype=torch.float16, scheduler=eulera_scheduler | |
) | |
pipe_stallion = StableDiffusionXLControlNetPipeline.from_pretrained( | |
ckpt_dir_stallion, controlnet=controlnet_stallion, vae=vae_stallion, torch_dtype=torch.float16, scheduler=eulera_scheduler | |
) | |
MAX_SEED = np.iinfo(np.int32).max | |
processor = HEDdetector.from_pretrained('lllyasviel/Annotators') | |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
return seed | |
def run( | |
image: dict, | |
prompt: str, | |
negative_prompt: str, | |
model_choice: str, # Add this new input | |
style_name: str = DEFAULT_STYLE_NAME, | |
num_steps: int = 25, | |
guidance_scale: float = 5, | |
controlnet_conditioning_scale: float = 1.0, | |
seed: int = 0, | |
use_hed: bool = False, | |
use_canny: bool = False, | |
progress=gr.Progress(track_tqdm=True), | |
) -> PIL.Image.Image: | |
# Get the composite image from the EditorValue dict | |
composite_image = image['composite'] | |
width, height = composite_image.size | |
# Calculate new dimensions to fit within 1024x1024 while maintaining aspect ratio | |
max_size = 1024 | |
ratio = min(max_size / width, max_size / height) | |
new_width = int(width * ratio) | |
new_height = int(height * ratio) | |
# Resize the image | |
resized_image = composite_image.resize((new_width, new_height), Image.LANCZOS) | |
if use_canny: | |
controlnet_img = np.array(resized_image) | |
controlnet_img = cv2.Canny(controlnet_img, 100, 200) | |
controlnet_img = HWC3(controlnet_img) | |
image = Image.fromarray(controlnet_img) | |
elif not use_hed: | |
controlnet_img = resized_image | |
image = resized_image | |
else: | |
controlnet_img = processor(resized_image, scribble=False) | |
controlnet_img = np.array(controlnet_img) | |
controlnet_img = nms(controlnet_img, 127, 3) | |
controlnet_img = cv2.GaussianBlur(controlnet_img, (0, 0), 3) | |
random_val = int(round(random.uniform(0.01, 0.10), 2) * 255) | |
controlnet_img[controlnet_img > random_val] = 255 | |
controlnet_img[controlnet_img < 255] = 0 | |
image = Image.fromarray(controlnet_img) | |
prompt, negative_prompt = apply_style(style_name, prompt, negative_prompt) | |
generator = torch.Generator(device=device).manual_seed(seed) | |
# Select the appropriate pipe based on the model choice | |
if model_choice == "Pony Realism v21": | |
pipe = pipe_pony | |
elif model_choice == "Cyber Realistic Pony v61": | |
pipe = pipe_cyber | |
else: # "Stallion Dreams Pony Realistic v1" | |
pipe = pipe_stallion | |
pipe.to(device) | |
if use_canny: | |
out = pipe( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
image=image, | |
num_inference_steps=num_steps, | |
generator=generator, | |
controlnet_conditioning_scale=controlnet_conditioning_scale, | |
guidance_scale=guidance_scale, | |
width=new_width, | |
height=new_height, | |
).images[0] | |
else: | |
out = pipe( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
image=image, | |
num_inference_steps=num_steps, | |
generator=generator, | |
controlnet_conditioning_scale=controlnet_conditioning_scale, | |
guidance_scale=guidance_scale, | |
width=new_width, | |
height=new_height, | |
).images[0] | |
pipe.to("cpu") | |
torch.cuda.empty_cache() | |
return (controlnet_img, out) | |
with gr.Blocks(css="style.css", js=js_func) as demo: | |
gr.Markdown(DESCRIPTION, elem_id="description") | |
gr.DuplicateButton( | |
value="Duplicate Space for private use", | |
elem_id="duplicate-button", | |
visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1", | |
) | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Group(): | |
image = gr.ImageEditor(type="pil", label="Sketch your image or upload one", width=512, height=512) | |
prompt = gr.Textbox(label="Prompt") | |
style = gr.Dropdown(label="Style", choices=STYLE_NAMES, value=DEFAULT_STYLE_NAME) | |
model_choice = gr.Dropdown( | |
["Pony Realism v21", "Cyber Realistic Pony v61", "Stallion Dreams Pony Realistic v1"], | |
label="Model Choice", | |
value="Pony Realism v21" | |
) | |
use_hed = gr.Checkbox(label="use HED detector", value=False, info="check this box if you upload an image and want to turn it to a sketch") | |
use_canny = gr.Checkbox(label="use Canny", value=False, info="check this to use ControlNet canny instead of scribble") | |
run_button = gr.Button("Run") | |
with gr.Accordion("Advanced options", open=False): | |
negative_prompt = gr.Textbox( | |
label="Negative prompt", | |
value="longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality", | |
) | |
num_steps = gr.Slider( | |
label="Number of steps", | |
minimum=1, | |
maximum=50, | |
step=1, | |
value=25, | |
) | |
guidance_scale = gr.Slider( | |
label="Guidance scale", | |
minimum=0.1, | |
maximum=10.0, | |
step=0.1, | |
value=5, | |
) | |
controlnet_conditioning_scale = gr.Slider( | |
label="controlnet conditioning scale", | |
minimum=0.5, | |
maximum=5.0, | |
step=0.1, | |
value=0.9, | |
) | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Column(): | |
with gr.Group(): | |
image_slider = ImageSlider(position=0.5) | |
inputs = [ | |
image, | |
prompt, | |
negative_prompt, | |
model_choice, # Add this new input | |
style, | |
num_steps, | |
guidance_scale, | |
controlnet_conditioning_scale, | |
seed, | |
use_hed, | |
use_canny | |
] | |
outputs = [image_slider] | |
run_button.click( | |
fn=randomize_seed_fn, | |
inputs=[seed, randomize_seed], | |
outputs=seed, | |
queue=False, | |
api_name=False, | |
).then(lambda x: None, inputs=None, outputs=image_slider).then( | |
fn=run, inputs=inputs, outputs=outputs | |
) | |
demo.queue().launch(show_error=True, ssl_verify=False) |