Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -201,7 +201,7 @@ def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
|
201 |
|
202 |
@spaces.GPU
|
203 |
def run(
|
204 |
-
image:
|
205 |
prompt: str,
|
206 |
negative_prompt: str,
|
207 |
style_name: str = DEFAULT_STYLE_NAME,
|
@@ -213,59 +213,65 @@ def run(
|
|
213 |
use_canny: bool = False,
|
214 |
progress=gr.Progress(track_tqdm=True),
|
215 |
) -> PIL.Image.Image:
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
220 |
|
221 |
if use_canny:
|
222 |
-
controlnet_img = np.array(
|
223 |
controlnet_img = cv2.Canny(controlnet_img, 100, 200)
|
224 |
controlnet_img = HWC3(controlnet_img)
|
225 |
image = Image.fromarray(controlnet_img)
|
226 |
-
|
227 |
elif not use_hed:
|
228 |
-
|
229 |
else:
|
230 |
-
controlnet_img = processor(
|
231 |
-
|
232 |
controlnet_img = np.array(controlnet_img)
|
233 |
controlnet_img = nms(controlnet_img, 127, 3)
|
234 |
controlnet_img = cv2.GaussianBlur(controlnet_img, (0, 0), 3)
|
235 |
-
|
236 |
-
# higher threshold, thiner line
|
237 |
random_val = int(round(random.uniform(0.01, 0.10), 2) * 255)
|
238 |
controlnet_img[controlnet_img > random_val] = 255
|
239 |
controlnet_img[controlnet_img < 255] = 0
|
240 |
image = Image.fromarray(controlnet_img)
|
241 |
|
242 |
-
|
243 |
prompt, negative_prompt = apply_style(style_name, prompt, negative_prompt)
|
244 |
|
245 |
generator = torch.Generator(device=device).manual_seed(seed)
|
|
|
246 |
if use_canny:
|
247 |
out = pipe_canny(
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
else:
|
259 |
out = pipe(
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
|
|
269 |
|
270 |
return (controlnet_img, out)
|
271 |
|
@@ -281,7 +287,7 @@ with gr.Blocks(css="style.css", js=js_func) as demo:
|
|
281 |
with gr.Row():
|
282 |
with gr.Column():
|
283 |
with gr.Group():
|
284 |
-
image = gr.ImageEditor(type="pil",
|
285 |
prompt = gr.Textbox(label="Prompt")
|
286 |
style = gr.Dropdown(label="Style", choices=STYLE_NAMES, value=DEFAULT_STYLE_NAME)
|
287 |
use_hed = gr.Checkbox(label="use HED detector", value=False, info="check this box if you upload an image and want to turn it to a sketch")
|
|
|
201 |
|
202 |
@spaces.GPU
|
203 |
def run(
|
204 |
+
image: dict,
|
205 |
prompt: str,
|
206 |
negative_prompt: str,
|
207 |
style_name: str = DEFAULT_STYLE_NAME,
|
|
|
213 |
use_canny: bool = False,
|
214 |
progress=gr.Progress(track_tqdm=True),
|
215 |
) -> PIL.Image.Image:
|
216 |
+
# Get the composite image from the EditorValue dict
|
217 |
+
composite_image = image['composite']
|
218 |
+
width, height = composite_image.size
|
219 |
+
|
220 |
+
# Calculate new dimensions to fit within 1024x1024 while maintaining aspect ratio
|
221 |
+
max_size = 1024
|
222 |
+
ratio = min(max_size / width, max_size / height)
|
223 |
+
new_width = int(width * ratio)
|
224 |
+
new_height = int(height * ratio)
|
225 |
+
|
226 |
+
# Resize the image
|
227 |
+
resized_image = composite_image.resize((new_width, new_height), Image.LANCZOS)
|
228 |
|
229 |
if use_canny:
|
230 |
+
controlnet_img = np.array(resized_image)
|
231 |
controlnet_img = cv2.Canny(controlnet_img, 100, 200)
|
232 |
controlnet_img = HWC3(controlnet_img)
|
233 |
image = Image.fromarray(controlnet_img)
|
|
|
234 |
elif not use_hed:
|
235 |
+
controlnet_img = resized_image
|
236 |
else:
|
237 |
+
controlnet_img = processor(resized_image, scribble=False)
|
238 |
+
# Process controlnet_img as before...
|
239 |
controlnet_img = np.array(controlnet_img)
|
240 |
controlnet_img = nms(controlnet_img, 127, 3)
|
241 |
controlnet_img = cv2.GaussianBlur(controlnet_img, (0, 0), 3)
|
|
|
|
|
242 |
random_val = int(round(random.uniform(0.01, 0.10), 2) * 255)
|
243 |
controlnet_img[controlnet_img > random_val] = 255
|
244 |
controlnet_img[controlnet_img < 255] = 0
|
245 |
image = Image.fromarray(controlnet_img)
|
246 |
|
|
|
247 |
prompt, negative_prompt = apply_style(style_name, prompt, negative_prompt)
|
248 |
|
249 |
generator = torch.Generator(device=device).manual_seed(seed)
|
250 |
+
|
251 |
if use_canny:
|
252 |
out = pipe_canny(
|
253 |
+
prompt=prompt,
|
254 |
+
negative_prompt=negative_prompt,
|
255 |
+
image=image,
|
256 |
+
num_inference_steps=num_steps,
|
257 |
+
generator=generator,
|
258 |
+
controlnet_conditioning_scale=controlnet_conditioning_scale,
|
259 |
+
guidance_scale=guidance_scale,
|
260 |
+
width=new_width,
|
261 |
+
height=new_height,
|
262 |
+
).images[0]
|
263 |
else:
|
264 |
out = pipe(
|
265 |
+
prompt=prompt,
|
266 |
+
negative_prompt=negative_prompt,
|
267 |
+
image=image,
|
268 |
+
num_inference_steps=num_steps,
|
269 |
+
generator=generator,
|
270 |
+
controlnet_conditioning_scale=controlnet_conditioning_scale,
|
271 |
+
guidance_scale=guidance_scale,
|
272 |
+
width=new_width,
|
273 |
+
height=new_height,
|
274 |
+
).images[0]
|
275 |
|
276 |
return (controlnet_img, out)
|
277 |
|
|
|
287 |
with gr.Row():
|
288 |
with gr.Column():
|
289 |
with gr.Group():
|
290 |
+
image = gr.ImageEditor(type="pil",label="Sketch your image or upload one", crop_size="1:1", width=1024, height=1024,)
|
291 |
prompt = gr.Textbox(label="Prompt")
|
292 |
style = gr.Dropdown(label="Style", choices=STYLE_NAMES, value=DEFAULT_STYLE_NAME)
|
293 |
use_hed = gr.Checkbox(label="use HED detector", value=False, info="check this box if you upload an image and want to turn it to a sketch")
|