Deadmon commited on
Commit
225f120
·
verified ·
1 Parent(s): c72212d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +39 -33
app.py CHANGED
@@ -201,7 +201,7 @@ def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
201
 
202
  @spaces.GPU
203
  def run(
204
- image: PIL.Image.Image,
205
  prompt: str,
206
  negative_prompt: str,
207
  style_name: str = DEFAULT_STYLE_NAME,
@@ -213,59 +213,65 @@ def run(
213
  use_canny: bool = False,
214
  progress=gr.Progress(track_tqdm=True),
215
  ) -> PIL.Image.Image:
216
- width, height = image['composite'].size
217
- ratio = np.sqrt(1024. * 1024. / (width * height))
218
- new_width, new_height = int(width * ratio), int(height * ratio)
219
- image = image['composite'].resize((new_width, new_height))
 
 
 
 
 
 
 
 
220
 
221
  if use_canny:
222
- controlnet_img = np.array(image)
223
  controlnet_img = cv2.Canny(controlnet_img, 100, 200)
224
  controlnet_img = HWC3(controlnet_img)
225
  image = Image.fromarray(controlnet_img)
226
-
227
  elif not use_hed:
228
- controlnet_img = image
229
  else:
230
- controlnet_img = processor(image, scribble=False)
231
- # following is some processing to simulate human sketch draw, different threshold can generate different width of lines
232
  controlnet_img = np.array(controlnet_img)
233
  controlnet_img = nms(controlnet_img, 127, 3)
234
  controlnet_img = cv2.GaussianBlur(controlnet_img, (0, 0), 3)
235
-
236
- # higher threshold, thiner line
237
  random_val = int(round(random.uniform(0.01, 0.10), 2) * 255)
238
  controlnet_img[controlnet_img > random_val] = 255
239
  controlnet_img[controlnet_img < 255] = 0
240
  image = Image.fromarray(controlnet_img)
241
 
242
-
243
  prompt, negative_prompt = apply_style(style_name, prompt, negative_prompt)
244
 
245
  generator = torch.Generator(device=device).manual_seed(seed)
 
246
  if use_canny:
247
  out = pipe_canny(
248
- prompt=prompt,
249
- negative_prompt=negative_prompt,
250
- image=image,
251
- num_inference_steps=num_steps,
252
- generator=generator,
253
- controlnet_conditioning_scale=controlnet_conditioning_scale,
254
- guidance_scale=guidance_scale,
255
- width=new_width,
256
- height=new_height,
257
- ).images[0]
258
  else:
259
  out = pipe(
260
- prompt=prompt,
261
- negative_prompt=negative_prompt,
262
- image=image,
263
- num_inference_steps=num_steps,
264
- generator=generator,
265
- controlnet_conditioning_scale=controlnet_conditioning_scale,
266
- guidance_scale=guidance_scale,
267
- width=new_width,
268
- height=new_height,).images[0]
 
269
 
270
  return (controlnet_img, out)
271
 
@@ -281,7 +287,7 @@ with gr.Blocks(css="style.css", js=js_func) as demo:
281
  with gr.Row():
282
  with gr.Column():
283
  with gr.Group():
284
- image = gr.ImageEditor(type="pil", image_mode="L", crop_size=(512, 512))
285
  prompt = gr.Textbox(label="Prompt")
286
  style = gr.Dropdown(label="Style", choices=STYLE_NAMES, value=DEFAULT_STYLE_NAME)
287
  use_hed = gr.Checkbox(label="use HED detector", value=False, info="check this box if you upload an image and want to turn it to a sketch")
 
201
 
202
  @spaces.GPU
203
  def run(
204
+ image: dict,
205
  prompt: str,
206
  negative_prompt: str,
207
  style_name: str = DEFAULT_STYLE_NAME,
 
213
  use_canny: bool = False,
214
  progress=gr.Progress(track_tqdm=True),
215
  ) -> PIL.Image.Image:
216
+ # Get the composite image from the EditorValue dict
217
+ composite_image = image['composite']
218
+ width, height = composite_image.size
219
+
220
+ # Calculate new dimensions to fit within 1024x1024 while maintaining aspect ratio
221
+ max_size = 1024
222
+ ratio = min(max_size / width, max_size / height)
223
+ new_width = int(width * ratio)
224
+ new_height = int(height * ratio)
225
+
226
+ # Resize the image
227
+ resized_image = composite_image.resize((new_width, new_height), Image.LANCZOS)
228
 
229
  if use_canny:
230
+ controlnet_img = np.array(resized_image)
231
  controlnet_img = cv2.Canny(controlnet_img, 100, 200)
232
  controlnet_img = HWC3(controlnet_img)
233
  image = Image.fromarray(controlnet_img)
 
234
  elif not use_hed:
235
+ controlnet_img = resized_image
236
  else:
237
+ controlnet_img = processor(resized_image, scribble=False)
238
+ # Process controlnet_img as before...
239
  controlnet_img = np.array(controlnet_img)
240
  controlnet_img = nms(controlnet_img, 127, 3)
241
  controlnet_img = cv2.GaussianBlur(controlnet_img, (0, 0), 3)
 
 
242
  random_val = int(round(random.uniform(0.01, 0.10), 2) * 255)
243
  controlnet_img[controlnet_img > random_val] = 255
244
  controlnet_img[controlnet_img < 255] = 0
245
  image = Image.fromarray(controlnet_img)
246
 
 
247
  prompt, negative_prompt = apply_style(style_name, prompt, negative_prompt)
248
 
249
  generator = torch.Generator(device=device).manual_seed(seed)
250
+
251
  if use_canny:
252
  out = pipe_canny(
253
+ prompt=prompt,
254
+ negative_prompt=negative_prompt,
255
+ image=image,
256
+ num_inference_steps=num_steps,
257
+ generator=generator,
258
+ controlnet_conditioning_scale=controlnet_conditioning_scale,
259
+ guidance_scale=guidance_scale,
260
+ width=new_width,
261
+ height=new_height,
262
+ ).images[0]
263
  else:
264
  out = pipe(
265
+ prompt=prompt,
266
+ negative_prompt=negative_prompt,
267
+ image=image,
268
+ num_inference_steps=num_steps,
269
+ generator=generator,
270
+ controlnet_conditioning_scale=controlnet_conditioning_scale,
271
+ guidance_scale=guidance_scale,
272
+ width=new_width,
273
+ height=new_height,
274
+ ).images[0]
275
 
276
  return (controlnet_img, out)
277
 
 
287
  with gr.Row():
288
  with gr.Column():
289
  with gr.Group():
290
+ image = gr.ImageEditor(type="pil",label="Sketch your image or upload one", crop_size="1:1", width=1024, height=1024,)
291
  prompt = gr.Textbox(label="Prompt")
292
  style = gr.Dropdown(label="Style", choices=STYLE_NAMES, value=DEFAULT_STYLE_NAME)
293
  use_hed = gr.Checkbox(label="use HED detector", value=False, info="check this box if you upload an image and want to turn it to a sketch")