Deadmon commited on
Commit
510255e
·
verified ·
1 Parent(s): 9e9d144

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +40 -30
app.py CHANGED
@@ -11,7 +11,7 @@ from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, Auto
11
  from diffusers import DDIMScheduler, EulerAncestralDiscreteScheduler
12
  from controlnet_aux import PidiNetDetector, HEDdetector
13
  from diffusers.utils import load_image
14
- from huggingface_hub import HfApi
15
  from pathlib import Path
16
  from PIL import Image, ImageOps
17
  import cv2
@@ -124,41 +124,37 @@ def apply_style(style_name: str, positive: str, negative: str = "") -> tuple[str
124
  p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
125
  return p.replace("{prompt}", positive), n + negative
126
 
127
-
128
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
129
 
130
  eulera_scheduler = EulerAncestralDiscreteScheduler.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", subfolder="scheduler")
131
 
 
 
 
 
132
 
133
- controlnet = ControlNetModel.from_pretrained(
134
- "xinsir/controlnet-union-sdxl-1.0",
135
- torch_dtype=torch.float16
136
- )
137
- controlnet_canny = ControlNetModel.from_pretrained(
138
- "xinsir/controlnet-union-sdxl-1.0",
139
- torch_dtype=torch.float16
 
 
 
 
140
  )
141
- # when test with other base model, you need to change the vae also.
142
- vae = AutoencoderKL.from_pretrained("John6666/pony-realism-v21main-sdxl", subfolder="vae", torch_dtype=torch.float16)
143
-
144
- pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
145
- "John6666/pony-realism-v21main-sdxl",
146
- controlnet=controlnet,
147
- vae=vae,
148
- torch_dtype=torch.float16,
149
- scheduler=eulera_scheduler,
150
  )
151
- pipe.to(device)
152
- # Load model.
153
- pipe_canny = StableDiffusionXLControlNetPipeline.from_pretrained(
154
- "John6666/pony-realism-v21main-sdxl",
155
- controlnet=controlnet_canny,
156
- vae=vae,
157
- safety_checker=None,
158
- torch_dtype=torch.float16,
159
- scheduler=eulera_scheduler,
160
  )
161
- pipe_canny.to(device)
 
 
 
162
 
163
  MAX_SEED = np.iinfo(np.int32).max
164
  processor = HEDdetector.from_pretrained('lllyasviel/Annotators')
@@ -189,6 +185,7 @@ def run(
189
  image: dict,
190
  prompt: str,
191
  negative_prompt: str,
 
192
  style_name: str = DEFAULT_STYLE_NAME,
193
  num_steps: int = 25,
194
  guidance_scale: float = 5,
@@ -233,8 +230,16 @@ def run(
233
 
234
  generator = torch.Generator(device=device).manual_seed(seed)
235
 
 
 
 
 
 
 
 
 
236
  if use_canny:
237
- out = pipe_canny(
238
  prompt=prompt,
239
  negative_prompt=negative_prompt,
240
  image=image,
@@ -273,7 +278,11 @@ with gr.Blocks(css="style.css", js=js_func) as demo:
273
  with gr.Group():
274
  image = gr.ImageEditor(type="pil", label="Sketch your image or upload one", width=512, height=512)
275
  prompt = gr.Textbox(label="Prompt")
276
- style = gr.Dropdown(label="Style", choices=STYLE_NAMES, value=DEFAULT_STYLE_NAME)
 
 
 
 
277
  use_hed = gr.Checkbox(label="use HED detector", value=False, info="check this box if you upload an image and want to turn it to a sketch")
278
  use_canny = gr.Checkbox(label="use Canny", value=False, info="check this to use ControlNet canny instead of scribble")
279
  run_button = gr.Button("Run")
@@ -321,6 +330,7 @@ with gr.Blocks(css="style.css", js=js_func) as demo:
321
  image,
322
  prompt,
323
  negative_prompt,
 
324
  style,
325
  num_steps,
326
  guidance_scale,
 
11
  from diffusers import DDIMScheduler, EulerAncestralDiscreteScheduler
12
  from controlnet_aux import PidiNetDetector, HEDdetector
13
  from diffusers.utils import load_image
14
+ from huggingface_hub import HfApi, snapshot_download
15
  from pathlib import Path
16
  from PIL import Image, ImageOps
17
  import cv2
 
124
  p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
125
  return p.replace("{prompt}", positive), n + negative
126
 
 
127
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
128
 
129
  eulera_scheduler = EulerAncestralDiscreteScheduler.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", subfolder="scheduler")
130
 
131
+ # Download the model files
132
+ ckpt_dir_pony = snapshot_download(repo_id="John6666/pony-realism-v21main-sdxl")
133
+ ckpt_dir_cyber = snapshot_download(repo_id="John6666/cyberrealistic-pony-v61-sdxl")
134
+ ckpt_dir_stallion = snapshot_download(repo_id="John6666/stallion-dreams-pony-realistic-v1-sdxl")
135
 
136
+ # Load the models
137
+ vae_pony = AutoencoderKL.from_pretrained(os.path.join(ckpt_dir_pony, "vae"), torch_dtype=torch.float16)
138
+ vae_cyber = AutoencoderKL.from_pretrained(os.path.join(ckpt_dir_cyber, "vae"), torch_dtype=torch.float16)
139
+ vae_stallion = AutoencoderKL.from_pretrained(os.path.join(ckpt_dir_stallion, "vae"), torch_dtype=torch.float16)
140
+
141
+ controlnet_pony = ControlNetModel.from_pretrained("xinsir/controlnet-union-sdxl-1.0", torch_dtype=torch.float16)
142
+ controlnet_cyber = ControlNetModel.from_pretrained("xinsir/controlnet-union-sdxl-1.0", torch_dtype=torch.float16)
143
+ controlnet_stallion = ControlNetModel.from_pretrained("xinsir/controlnet-union-sdxl-1.0", torch_dtype=torch.float16)
144
+
145
+ pipe_pony = StableDiffusionXLControlNetPipeline.from_pretrained(
146
+ ckpt_dir_pony, controlnet=controlnet_pony, vae=vae_pony, torch_dtype=torch.float16, scheduler=eulera_scheduler
147
  )
148
+ pipe_cyber = StableDiffusionXLControlNetPipeline.from_pretrained(
149
+ ckpt_dir_cyber, controlnet=controlnet_cyber, vae=vae_cyber, torch_dtype=torch.float16, scheduler=eulera_scheduler
 
 
 
 
 
 
 
150
  )
151
+ pipe_stallion = StableDiffusionXLControlNetPipeline.from_pretrained(
152
+ ckpt_dir_stallion, controlnet=controlnet_stallion, vae=vae_stallion, torch_dtype=torch.float16, scheduler=eulera_scheduler
 
 
 
 
 
 
 
153
  )
154
+
155
+ pipe_pony.to(device)
156
+ pipe_cyber.to(device)
157
+ pipe_stallion.to(device)
158
 
159
  MAX_SEED = np.iinfo(np.int32).max
160
  processor = HEDdetector.from_pretrained('lllyasviel/Annotators')
 
185
  image: dict,
186
  prompt: str,
187
  negative_prompt: str,
188
+ model_choice: str, # Add this new input
189
  style_name: str = DEFAULT_STYLE_NAME,
190
  num_steps: int = 25,
191
  guidance_scale: float = 5,
 
230
 
231
  generator = torch.Generator(device=device).manual_seed(seed)
232
 
233
+ # Select the appropriate pipe based on the model choice
234
+ if model_choice == "Pony Realism v21":
235
+ pipe = pipe_pony
236
+ elif model_choice == "Cyber Realistic Pony v61":
237
+ pipe = pipe_cyber
238
+ else: # "Stallion Dreams Pony Realistic v1"
239
+ pipe = pipe_stallion
240
+
241
  if use_canny:
242
+ out = pipe(
243
  prompt=prompt,
244
  negative_prompt=negative_prompt,
245
  image=image,
 
278
  with gr.Group():
279
  image = gr.ImageEditor(type="pil", label="Sketch your image or upload one", width=512, height=512)
280
  prompt = gr.Textbox(label="Prompt")
281
+ model_choice = gr.Dropdown(
282
+ ["Pony Realism v21", "Cyber Realistic Pony v61", "Stallion Dreams Pony Realistic v1"],
283
+ label="Model Choice",
284
+ value="Pony Realism v21"
285
+ )
286
  use_hed = gr.Checkbox(label="use HED detector", value=False, info="check this box if you upload an image and want to turn it to a sketch")
287
  use_canny = gr.Checkbox(label="use Canny", value=False, info="check this to use ControlNet canny instead of scribble")
288
  run_button = gr.Button("Run")
 
330
  image,
331
  prompt,
332
  negative_prompt,
333
+ model_choice, # Add this new input
334
  style,
335
  num_steps,
336
  guidance_scale,