Field-Monitoring / utils.py
mukhtar's picture
caching prev dates to persistatent memory
46c0e18
raw
history blame
6.53 kB
import os
import folium
import confuse
import numpy as np
from math import isnan
import geopandas as gpd
from shapely.geometry import Point
from PIL import Image
from tqdm import tqdm
# Initialzie custom basemaps for folium
basemaps = {
'Google Maps': folium.TileLayer(
tiles = 'https://mt1.google.com/vt/lyrs=m&x={x}&y={y}&z={z}',
attr = 'Google',
name = 'Google Maps',
overlay = True,
control = True
),
'Google Satellite': folium.TileLayer(
tiles = 'https://mt1.google.com/vt/lyrs=s&x={x}&y={y}&z={z}',
attr = 'Google',
name = 'Google Satellite',
overlay = True,
control = True
),
'Google Terrain': folium.TileLayer(
tiles = 'https://mt1.google.com/vt/lyrs=p&x={x}&y={y}&z={z}',
attr = 'Google',
name = 'Google Terrain',
overlay = True,
control = True
),
'Google Satellite Hybrid': folium.TileLayer(
tiles = 'https://mt1.google.com/vt/lyrs=y&x={x}&y={y}&z={z}',
attr = 'Google',
name = 'Google Satellite',
overlay = True,
control = True
),
'Esri Satellite': folium.TileLayer(
tiles = 'https://server.arcgisonline.com/ArcGIS/rest/services/World_Imagery/MapServer/tile/{z}/{y}/{x}',
attr = 'Esri',
name = 'Esri Satellite',
overlay = True,
control = True
),
'openstreetmap': folium.TileLayer('openstreetmap'),
'cartodbdark_matter': folium.TileLayer('cartodbdark_matter')
}
# Dictionary of JavaScript files (More Readable)
scripts_dir = './scripts/'
scripts_files = [f for f in os.listdir(scripts_dir) if f.endswith('.js')]
Scripts = {}
for f in scripts_files:
key = f.split('.')[0].upper()
with open(scripts_dir + f) as f:
Scripts[key] = f.read()
def calculate_bbox(df, field):
'''
Calculate the bounding box of a specfic field ID in a given data frame
'''
bbox = df.loc[df['name'] == field].bounds
r = bbox.iloc[0]
return [r.minx, r.miny, r.maxx, r.maxy]
def tiff_to_geodataframe(im, metric, date, crs):
'''
Convert a tiff image to a geodataframe
'''
x_cords = im.coords['x'].values
y_cords = im.coords['y'].values
vals = im.values
dims = vals.shape
points = []
v_s = []
for lat in range(dims[1]):
y = y_cords[lat]
for lon in range(dims[2]):
x = x_cords[lon]
v = vals[:,lat,lon]
if isnan(v[0]):
continue
points.append(Point(x,y))
v_s.append(v.item())
d = {f'{metric}_{date}': v_s, 'geometry': points}
df = gpd.GeoDataFrame(d, crs = crs)
return df
def get_bearer_token_headers(bearer_token):
'''
Get the bearer token headers to be used in the request to the SentinelHub API
'''
headers = {
'Content-Type': 'application/json',
'Authorization': 'Bearer '+ bearer_token,
}
return headers
def get_downloaded_location_img_path(clientName, metric, date, field, extension='tiff'):
'''
Get the path of the downloaded image in TIFF based on the:
'''
date_dir = f'./data/{clientName}/raw/{metric}/{date}/field_{field}/'
print(f'True Color Date Dir: {date_dir}')
os.makedirs(date_dir, exist_ok=True)
intermediate_dirs = os.listdir(date_dir)
print(f'Intermediate Dirs: {intermediate_dirs}')
if len(intermediate_dirs) == 0:
return None
imagePath = f'{date_dir}{os.listdir(date_dir)[0]}/response.{extension}'
print(f'Image Path: {imagePath}')
if not os.path.exists(imagePath):
return None
print(f'Image Path: {imagePath}')
return imagePath
def get_masked_location_img_path(clientName, metric, date, field):
'''
Get the path of the downloaded image after applying the mask in TIFF based on the:
'''
date_dir = f'./data/{clientName}/processed/{metric}/{date}/field_{field}/'
imagePath = date_dir + 'masked.tiff'
return imagePath
def get_curated_location_img_path(clientName, metric, date, field):
'''
Get the path of the downloaded image after applying the mask and converting it to geojson formay based on the:
'''
date_dir = f'./data/{clientName}/curated/{metric}/{date}/field_{field}/'
imagePath = date_dir + 'masked.geojson'
if os.path.exists(imagePath):
return imagePath
else:
return None
def parse_app_config(path=r'config-fgm-dev.yaml'):
config = confuse.Configuration('CropHealth', __name__)
config.set_file(path)
return config
def fix_image(img):
def normalize(band):
band_min, band_max = (band.min(), band.max())
return ((band-band_min)/((band_max - band_min)))
def brighten(band):
alpha=3
beta=0
return np.clip(alpha*band+beta, 0,255)
def gammacorr(band):
gamma=0.9
return np.power(band, 1/gamma)
red = img[:, :, 0]
green = img[:, :, 1]
blue = img[:, :, 2]
red_b=brighten(red)
blue_b=brighten(blue)
green_b=brighten(green)
red_bg=gammacorr(red_b)
blue_bg=gammacorr(blue_b)
green_bg=gammacorr(green_b)
red_bgn = normalize(red_bg)
green_bgn = normalize(green_bg)
blue_bgn = normalize(blue_bg)
rgb_composite_bgn= np.dstack((red_b, green_b, blue_b))
return rgb_composite_bgn
def creat_gif(dataset, gif_name, duration=50):
'''
Create a gif from a list of images
'''
imgs = [Image.fromarray((255*img).astype(np.uint8)) for img in dataset]
# duration is the number of milliseconds between frames; this is 40 frames per second
imgs[0].save(gif_name, save_all=True, append_images=imgs[1:], duration=duration, loop=1)
def add_lat_lon_to_gdf_from_geometry(gdf):
gdf['Lat'] = gdf['geometry'].apply(lambda p: p.x)
gdf['Lon'] = gdf['geometry'].apply(lambda p: p.y)
return gdf
def gdf_column_to_one_band_array(gdf, column_name):
gdf = gdf.sort_values(by=['Lat', 'Lon'])
gdf = gdf.reset_index(drop=True)
unique_lats_count = gdf['Lat'].nunique()
unique_lons_count = gdf['Lon'].nunique()
rows_arr = [[] for i in range(unique_lats_count)]
column_values = gdf[column_name].values
for i in tqdm(range(len(column_values))):
row_index = i // unique_lons_count
rows_arr[row_index].append(column_values[i])
max_row_length = max([len(row) for row in rows_arr])
for row in rows_arr:
while len(row) < max_row_length:
row.append(0)
rows_arr = np.array(rows_arr)
return rows_arr