new updates
Browse files- app.py +7 -7
- fields_asim.parquet +0 -0
- fields_dfr4.parquet +0 -0
- main.py +9 -8
- pag/add_field.py +1 -1
- pag/edit.py +87 -30
- pag/moniter.py +0 -561
- pag/monitor.py +2 -297
- test.py +0 -43
app.py
CHANGED
@@ -3,8 +3,8 @@ import streamlit as st
|
|
3 |
import authentication
|
4 |
import streamlit as st
|
5 |
from pag import add_field, edit, monitor
|
6 |
-
|
7 |
-
|
8 |
def authenticate_user():
|
9 |
st.title("Welcome to :orange[Field Monitoring App]")
|
10 |
st.markdown("""
|
@@ -28,22 +28,22 @@ def authenticate_user():
|
|
28 |
def main():
|
29 |
|
30 |
if "authenticated" not in st.session_state:
|
31 |
-
st.session_state.authenticated = False
|
32 |
|
33 |
if st.session_state.authenticated:
|
34 |
-
st.sidebar.title("
|
35 |
options = st.sidebar.radio("Choose an option:",
|
36 |
-
("Add Field", "
|
37 |
|
38 |
if options == "Add Field":
|
39 |
st.title("Welcome to :orange[Field Monitoring App]")
|
40 |
|
41 |
add_field.add_drawing()
|
42 |
|
43 |
-
elif options == "
|
44 |
st.title("Welcome to :orange[Field Monitoring App]")
|
45 |
edit.edit_fields()
|
46 |
-
elif options == "Monitor":
|
47 |
st.title("Welcome to :orange[Field Monitoring App]")
|
48 |
monitor.monitor_fields()
|
49 |
else:
|
|
|
3 |
import authentication
|
4 |
import streamlit as st
|
5 |
from pag import add_field, edit, monitor
|
6 |
+
|
7 |
+
|
8 |
def authenticate_user():
|
9 |
st.title("Welcome to :orange[Field Monitoring App]")
|
10 |
st.markdown("""
|
|
|
28 |
def main():
|
29 |
|
30 |
if "authenticated" not in st.session_state:
|
31 |
+
st.session_state.authenticated = False
|
32 |
|
33 |
if st.session_state.authenticated:
|
34 |
+
st.sidebar.title("Navigation")
|
35 |
options = st.sidebar.radio("Choose an option:",
|
36 |
+
("Add Field", "Manage Fields", "Monitor Fields"))
|
37 |
|
38 |
if options == "Add Field":
|
39 |
st.title("Welcome to :orange[Field Monitoring App]")
|
40 |
|
41 |
add_field.add_drawing()
|
42 |
|
43 |
+
elif options == "Manage Fields":
|
44 |
st.title("Welcome to :orange[Field Monitoring App]")
|
45 |
edit.edit_fields()
|
46 |
+
elif options == "Monitor Fields":
|
47 |
st.title("Welcome to :orange[Field Monitoring App]")
|
48 |
monitor.monitor_fields()
|
49 |
else:
|
fields_asim.parquet
CHANGED
Binary files a/fields_asim.parquet and b/fields_asim.parquet differ
|
|
fields_dfr4.parquet
DELETED
Binary file (8.54 kB)
|
|
main.py
CHANGED
@@ -2,9 +2,9 @@
|
|
2 |
import streamlit as st
|
3 |
import authentication
|
4 |
import streamlit as st
|
5 |
-
from pag import add_field, edit,
|
6 |
-
|
7 |
-
|
8 |
def authenticate_user():
|
9 |
st.title("Welcome to :orange[Field Monitoring App]")
|
10 |
st.markdown("""
|
@@ -12,6 +12,7 @@ def authenticate_user():
|
|
12 |
.stSelectbox > div > div {cursor: pointer;}
|
13 |
</style>
|
14 |
""", unsafe_allow_html=True)
|
|
|
15 |
if not st.session_state.authenticated:
|
16 |
choice = st.selectbox("Interested? Sign up or log in if you have an account",options=["Home","Login","SignUp"])
|
17 |
|
@@ -28,24 +29,24 @@ def authenticate_user():
|
|
28 |
def main():
|
29 |
|
30 |
if "authenticated" not in st.session_state:
|
31 |
-
st.session_state.authenticated = False
|
32 |
|
33 |
if st.session_state.authenticated:
|
34 |
st.sidebar.title("Navigation")
|
35 |
options = st.sidebar.radio("Choose an option:",
|
36 |
-
("Add Field", "
|
37 |
|
38 |
if options == "Add Field":
|
39 |
st.title("Welcome to :orange[Field Monitoring App]")
|
40 |
|
41 |
add_field.add_drawing()
|
42 |
|
43 |
-
elif options == "
|
44 |
st.title("Welcome to :orange[Field Monitoring App]")
|
45 |
edit.edit_fields()
|
46 |
-
elif options == "Monitor":
|
47 |
st.title("Welcome to :orange[Field Monitoring App]")
|
48 |
-
|
49 |
else:
|
50 |
authenticate_user()
|
51 |
if __name__ == "__main__":
|
|
|
2 |
import streamlit as st
|
3 |
import authentication
|
4 |
import streamlit as st
|
5 |
+
from pag import add_field, edit, monitor
|
6 |
+
|
7 |
+
|
8 |
def authenticate_user():
|
9 |
st.title("Welcome to :orange[Field Monitoring App]")
|
10 |
st.markdown("""
|
|
|
12 |
.stSelectbox > div > div {cursor: pointer;}
|
13 |
</style>
|
14 |
""", unsafe_allow_html=True)
|
15 |
+
|
16 |
if not st.session_state.authenticated:
|
17 |
choice = st.selectbox("Interested? Sign up or log in if you have an account",options=["Home","Login","SignUp"])
|
18 |
|
|
|
29 |
def main():
|
30 |
|
31 |
if "authenticated" not in st.session_state:
|
32 |
+
st.session_state.authenticated = False
|
33 |
|
34 |
if st.session_state.authenticated:
|
35 |
st.sidebar.title("Navigation")
|
36 |
options = st.sidebar.radio("Choose an option:",
|
37 |
+
("Add Field", "Manage Fields", "Monitor Fields"))
|
38 |
|
39 |
if options == "Add Field":
|
40 |
st.title("Welcome to :orange[Field Monitoring App]")
|
41 |
|
42 |
add_field.add_drawing()
|
43 |
|
44 |
+
elif options == "Manage Fields":
|
45 |
st.title("Welcome to :orange[Field Monitoring App]")
|
46 |
edit.edit_fields()
|
47 |
+
elif options == "Monitor Fields":
|
48 |
st.title("Welcome to :orange[Field Monitoring App]")
|
49 |
+
monitor.monitor_fields()
|
50 |
else:
|
51 |
authenticate_user()
|
52 |
if __name__ == "__main__":
|
pag/add_field.py
CHANGED
@@ -54,7 +54,7 @@ def display_map_and_drawing_controls(m, center_start):
|
|
54 |
zoom_start = 13
|
55 |
if st.session_state['active_drawing'] is None:
|
56 |
st.info("IMPORTANT: Click on the drawing to confirm the drawn field", icon="🚨")
|
57 |
-
sat_basemap = utils.basemaps['Google Satellite']
|
58 |
sat_basemap.add_to(m)
|
59 |
folium.LayerControl().add_to(m)
|
60 |
output = st_folium(m, center=center_start, zoom=zoom_start, key="new", width=800)
|
|
|
54 |
zoom_start = 13
|
55 |
if st.session_state['active_drawing'] is None:
|
56 |
st.info("IMPORTANT: Click on the drawing to confirm the drawn field", icon="🚨")
|
57 |
+
sat_basemap = utils.basemaps['Google Satellite Hybrid'] # Change this line to use 'Google Satellite Hybrid'
|
58 |
sat_basemap.add_to(m)
|
59 |
folium.LayerControl().add_to(m)
|
60 |
output = st_folium(m, center=center_start, zoom=zoom_start, key="new", width=800)
|
pag/edit.py
CHANGED
@@ -5,10 +5,9 @@ import geopandas as gpd
|
|
5 |
from streamlit_folium import st_folium, folium_static
|
6 |
from authentication import greeting, check_password
|
7 |
import folium
|
|
|
8 |
import time
|
9 |
-
|
10 |
-
if not check_password():
|
11 |
-
st.stop()
|
12 |
|
13 |
|
14 |
def add_properties(df, col_name, value, field_name):
|
@@ -37,17 +36,24 @@ def read_custom_property():
|
|
37 |
return custom_property_name, custom_property_value
|
38 |
|
39 |
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
def edit_fields():
|
44 |
-
current_user = greeting("
|
45 |
-
|
46 |
-
|
47 |
-
|
|
|
|
|
|
|
48 |
else:
|
49 |
-
st.info("No
|
50 |
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
st.info("Hover over the field to show the properties or check the Existing Fields List below")
|
52 |
fields_map = gdf.explore()
|
53 |
sat_basemap = utils.basemaps['Google Satellite']
|
@@ -56,32 +62,27 @@ def edit_fields():
|
|
56 |
folium_static(fields_map, height=300, width=600)
|
57 |
|
58 |
with st.expander("Existing Fields List", expanded=False):
|
|
|
59 |
st.write(gdf)
|
60 |
|
61 |
field_name = select_field(gdf)
|
62 |
if field_name == "Select Field":
|
63 |
st.info("No Field Selected Yet!")
|
64 |
-
|
65 |
else:
|
66 |
-
|
67 |
-
|
|
|
68 |
field = gdf[gdf['name'] == field_name]
|
69 |
st.write(field)
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
gdf = gdf[gdf['name'] != field_name]
|
80 |
-
gdf.to_parquet(file_path)
|
81 |
-
st.success("Field Deleted Successfully!")
|
82 |
-
time.sleep(0.3)
|
83 |
-
st.rerun()
|
84 |
-
else:
|
85 |
no_input = True
|
86 |
crop_type = read_crop_type()
|
87 |
irrigation_type = read_irrigation_type()
|
@@ -103,8 +104,64 @@ def edit_fields():
|
|
103 |
st.success("Field Information Updated Successfully!")
|
104 |
st.info("Please Select View above to see the updated field information")
|
105 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
|
107 |
if __name__ == '__main__':
|
108 |
-
check_authentication()
|
109 |
|
110 |
edit_fields()
|
|
|
5 |
from streamlit_folium import st_folium, folium_static
|
6 |
from authentication import greeting, check_password
|
7 |
import folium
|
8 |
+
import json
|
9 |
import time
|
10 |
+
import pandas as pd
|
|
|
|
|
11 |
|
12 |
|
13 |
def add_properties(df, col_name, value, field_name):
|
|
|
36 |
return custom_property_name, custom_property_value
|
37 |
|
38 |
|
|
|
|
|
|
|
39 |
def edit_fields():
|
40 |
+
current_user = greeting("Manage your fields")
|
41 |
+
fields_file_path = f"fields_{current_user}.parquet"
|
42 |
+
history_file_path = f"history_{current_user}.csv"
|
43 |
+
|
44 |
+
# Load or initialize the GeoDataFrame for fields
|
45 |
+
if os.path.exists(fields_file_path):
|
46 |
+
gdf = gpd.read_parquet(fields_file_path)
|
47 |
else:
|
48 |
+
st.info("No fields added yet!")
|
49 |
return
|
50 |
+
|
51 |
+
# Load or initialize the DataFrame for field usage history
|
52 |
+
if os.path.exists(history_file_path):
|
53 |
+
history_df = pd.read_csv(history_file_path)
|
54 |
+
else:
|
55 |
+
history_df = pd.DataFrame(columns=['field_name', 'start_date', 'end_date', 'crop', 'irrigation_method'])
|
56 |
+
|
57 |
st.info("Hover over the field to show the properties or check the Existing Fields List below")
|
58 |
fields_map = gdf.explore()
|
59 |
sat_basemap = utils.basemaps['Google Satellite']
|
|
|
62 |
folium_static(fields_map, height=300, width=600)
|
63 |
|
64 |
with st.expander("Existing Fields List", expanded=False):
|
65 |
+
# lis = [(f"Name:{gdf.iloc[i]['name']}",f"location: {gdf.iloc[i]['geometry']}" )for i in range(len(gdf))]
|
66 |
st.write(gdf)
|
67 |
|
68 |
field_name = select_field(gdf)
|
69 |
if field_name == "Select Field":
|
70 |
st.info("No Field Selected Yet!")
|
|
|
71 |
else:
|
72 |
+
st.subheader(field_name)
|
73 |
+
option_menu = st.radio(f"Please add your {field_name} field information, historical data will help train our AI model", options=["View Field Info", "Add Field Information","Add Field Cultivation History", "Delete"], key="option_menu", help="Select the operation to perform")
|
74 |
+
if option_menu == "View Field Info":
|
75 |
field = gdf[gdf['name'] == field_name]
|
76 |
st.write(field)
|
77 |
+
# Deserialize the usage history for display
|
78 |
+
if len(history_df)>0:
|
79 |
+
st.write("Previous cultivation History:", history_df)
|
80 |
+
else:
|
81 |
+
st.subheader("No cultivation history added for this field.")
|
82 |
+
|
83 |
+
elif option_menu == "Add Field Information":
|
84 |
+
|
85 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
no_input = True
|
87 |
crop_type = read_crop_type()
|
88 |
irrigation_type = read_irrigation_type()
|
|
|
104 |
st.success("Field Information Updated Successfully!")
|
105 |
st.info("Please Select View above to see the updated field information")
|
106 |
|
107 |
+
elif option_menu == "Add Field Cultivation History":
|
108 |
+
with st.form(key='history_form', clear_on_submit=True):
|
109 |
+
start_date = st.date_input("Cultivation Start Date", key=f'start_date')
|
110 |
+
end_date = st.date_input("Cultivation End Date", key=f'end_date')
|
111 |
+
crop_planted = st.selectbox("Type of Crop Planted", [' ', 'Wheat', 'Corn', 'Rice',"other"], index=0)
|
112 |
+
|
113 |
+
irrigation_method = st.selectbox("Irrigation Method Used", ['Rainfed', 'Irrigated', " "], index=2)
|
114 |
+
submit_history = st.form_submit_button("Submit Crop Cycle")
|
115 |
+
if submit_history:
|
116 |
+
# Check that the start date is before the end date
|
117 |
+
if start_date < end_date:
|
118 |
+
# Append new usage entry
|
119 |
+
new_history = {
|
120 |
+
'field_name': field_name,
|
121 |
+
'start_date': str(start_date),
|
122 |
+
'end_date': str(end_date),
|
123 |
+
'crop': crop_planted,
|
124 |
+
'irrigation_method': irrigation_method
|
125 |
+
}
|
126 |
+
# Use concat instead of append
|
127 |
+
history_df = pd.concat([history_df, pd.DataFrame([new_history])], ignore_index=True)
|
128 |
+
history_df.to_csv(history_file_path, index=False)
|
129 |
+
st.success("Field usage history updated successfully!, fill the form again to add another cultivation history" )
|
130 |
+
|
131 |
+
else:
|
132 |
+
st.write("check the entered dates")
|
133 |
+
|
134 |
+
elif option_menu == "Delete":
|
135 |
+
option = st.selectbox("What do you want to delete", options=[f'Delete {field_name} Field', 'Delete a historical entry from the field'])
|
136 |
+
|
137 |
+
if option == f"Delete {field_name} Field" :
|
138 |
+
delete = st.button("Delete Entire Field", key="delete_field", help="Click to Delete Field", type="primary", use_container_width=True)
|
139 |
+
if delete:
|
140 |
+
if len(gdf) == 1 and (gdf['name'] == field_name).all(): # Check if this is the only field left
|
141 |
+
os.remove(fields_file_path) # Delete the .parquet file if it's the last field
|
142 |
+
os.remove(history_file_path)
|
143 |
+
st.success("All fields deleted. The data file has been removed.")
|
144 |
+
time.sleep(0.3)
|
145 |
+
st.rerun()
|
146 |
+
else:
|
147 |
+
gdf = gdf[gdf['name'] != field_name]
|
148 |
+
history_df = history_df[history_df["field_name"] != field_name ]
|
149 |
+
gdf.to_parquet(fields_file_path)
|
150 |
+
history_df.to_csv(history_file_path, index=False)
|
151 |
+
st.success("Field Deleted Successfully!")
|
152 |
+
time.sleep(0.3)
|
153 |
+
st.rerun()
|
154 |
+
elif option == "Delete a historical entry from the field":
|
155 |
+
# Allow the user to select which historical entry to delete
|
156 |
+
idx_history_to_delete = st.selectbox("Select a history to delete, select the index of the entry that you want to delete", options=history_df[history_df['field_name'] == field_name].index)
|
157 |
+
if st.button("Confirm Delete Historical Entry", key="delete_history", help="Click to Delete Entry", type="primary", use_container_width=True):
|
158 |
+
history_df.drop(labels=0, axis=0, index=None, columns=None, level=None, inplace=True, errors='raise')
|
159 |
+
history_df.to_csv(history_file_path, index=False)
|
160 |
+
|
161 |
+
st.success("Entry Deleted Successfully!")
|
162 |
+
time.sleep(0.3)
|
163 |
+
st.rerun()
|
164 |
|
165 |
if __name__ == '__main__':
|
|
|
166 |
|
167 |
edit_fields()
|
pag/moniter.py
DELETED
@@ -1,561 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import utils
|
3 |
-
import streamlit as st
|
4 |
-
import geopandas as gpd
|
5 |
-
from streamlit_folium import st_folium, folium_static
|
6 |
-
from authentication import greeting, check_password
|
7 |
-
import folium
|
8 |
-
from senHub import SenHub
|
9 |
-
from datetime import datetime
|
10 |
-
from sentinelhub import SHConfig, MimeType
|
11 |
-
import requests
|
12 |
-
import process
|
13 |
-
import joblib
|
14 |
-
from zipfile import ZipFile
|
15 |
-
import matplotlib.pyplot as plt
|
16 |
-
from plotly.subplots import make_subplots
|
17 |
-
import plotly.graph_objects as go
|
18 |
-
|
19 |
-
def check_authentication():
|
20 |
-
if not check_password():
|
21 |
-
st.stop()
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
config = SHConfig()
|
26 |
-
config.instance_id = '6c220beb-90c4-4131-b658-10cddd8d97b9'
|
27 |
-
config.sh_client_id = '17e7c154-7f2d-4139-b1af-cef762385079'
|
28 |
-
config.sh_client_secret = 'KvbQMKZB85ZWEgWuxqiWIVEvTAQEfoF9'
|
29 |
-
|
30 |
-
|
31 |
-
def select_field(gdf):
|
32 |
-
names = gdf['name'].tolist()
|
33 |
-
names.append("Select Field")
|
34 |
-
field_name = st.selectbox("Select Field", options=names, key="field_name_monitor", help="Select the field to edit", index=len(names)-1)
|
35 |
-
return field_name
|
36 |
-
|
37 |
-
|
38 |
-
def calculate_bbox(df, field):
|
39 |
-
bbox = df.loc[df['name'] == field].bounds
|
40 |
-
r = bbox.iloc[0]
|
41 |
-
return [r.minx, r.miny, r.maxx, r.maxy]
|
42 |
-
|
43 |
-
def get_available_dates_for_field(df, field, year, start_date='', end_date=''):
|
44 |
-
bbox = calculate_bbox(df, field)
|
45 |
-
token = SenHub(config).token
|
46 |
-
headers = utils.get_bearer_token_headers(token)
|
47 |
-
if start_date == '' or end_date == '':
|
48 |
-
start_date = f'{year}-01-01'
|
49 |
-
end_date = f'{year}-12-31'
|
50 |
-
data = f'{{ "collections": [ "sentinel-2-l2a" ], "datetime": "{start_date}T00:00:00Z/{end_date}T23:59:59Z", "bbox": {bbox}, "limit": 100, "distinct": "date" }}'
|
51 |
-
response = requests.post('https://services.sentinel-hub.com/api/v1/catalog/search', headers=headers, data=data)
|
52 |
-
try:
|
53 |
-
features = response.json()['features']
|
54 |
-
except:
|
55 |
-
print(response.json())
|
56 |
-
features = []
|
57 |
-
return features
|
58 |
-
|
59 |
-
@st.cache_data
|
60 |
-
def get_and_cache_available_dates(_df, field, year, start_date, end_date):
|
61 |
-
dates = get_available_dates_for_field(_df, field, year, start_date, end_date)
|
62 |
-
print(f'Caching Dates for {field}')
|
63 |
-
return dates
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
def get_cuarted_df_for_field(df, field, date, metric, clientName):
|
69 |
-
curated_date_path = utils.get_curated_location_img_path(clientName, metric, date, field)
|
70 |
-
if curated_date_path is not None:
|
71 |
-
curated_df = gpd.read_file(curated_date_path)
|
72 |
-
else:
|
73 |
-
process.Download_image_in_given_date(clientName, metric, df, field, date)
|
74 |
-
process.mask_downladed_image(clientName, metric, df, field, date)
|
75 |
-
process.convert_maske_image_to_geodataframe(clientName, metric, df, field, date, df.crs)
|
76 |
-
curated_date_path = utils.get_curated_location_img_path(clientName, metric, date, field)
|
77 |
-
curated_df = gpd.read_file(curated_date_path)
|
78 |
-
return curated_df
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
def get_cuarted_df_for_field(df, field, date, metric, clientName):
|
88 |
-
curated_date_path = utils.get_curated_location_img_path(clientName, metric, date, field)
|
89 |
-
if curated_date_path is not None:
|
90 |
-
curated_df = gpd.read_file(curated_date_path)
|
91 |
-
else:
|
92 |
-
process.Download_image_in_given_date(clientName, metric, df, field, date)
|
93 |
-
process.mask_downladed_image(clientName, metric, df, field, date)
|
94 |
-
process.convert_maske_image_to_geodataframe(clientName, metric, df, field, date, df.crs)
|
95 |
-
curated_date_path = utils.get_curated_location_img_path(clientName, metric, date, field)
|
96 |
-
curated_df = gpd.read_file(curated_date_path)
|
97 |
-
return curated_df
|
98 |
-
|
99 |
-
def track(metric, field_name, src_df, client_name):
|
100 |
-
|
101 |
-
dates = []
|
102 |
-
date = -1
|
103 |
-
if 'dates' not in st.session_state:
|
104 |
-
st.session_state['dates'] = dates
|
105 |
-
else:
|
106 |
-
dates = st.session_state['dates']
|
107 |
-
if 'date' not in st.session_state:
|
108 |
-
st.session_state['date'] = date
|
109 |
-
else:
|
110 |
-
date = st.session_state['date']
|
111 |
-
|
112 |
-
# Give the user the option to select year, start date and end date
|
113 |
-
# with st.expander('Select Year, Start Date and End Date'):
|
114 |
-
# # Get the year
|
115 |
-
# years = [f'20{i}' for i in range(22, 25)]
|
116 |
-
# year = st.selectbox('Select Year: ', years, index=len(years)-2, key=f'Select Year Dropdown Menu - {metric}')
|
117 |
-
|
118 |
-
# # Set the min, max and default values for start and end dates
|
119 |
-
# min_val = f'{year}-01-01'
|
120 |
-
# max_val = f'{year}-12-31'
|
121 |
-
# default_val = f'{year}-11-01'
|
122 |
-
# min_val = datetime.strptime(min_val, '%Y-%m-%d')
|
123 |
-
# max_val = datetime.strptime(max_val, '%Y-%m-%d')
|
124 |
-
# default_val = datetime.strptime(default_val, '%Y-%m-%d')
|
125 |
-
|
126 |
-
# # Get the start and end dates
|
127 |
-
# start_date = st.date_input('Start Date', value=default_val, min_value=min_val, max_value=max_val, key=f'Start Date - {metric}')
|
128 |
-
# end_date = st.date_input('End Date', value=max_val, min_value=min_val, max_value=max_val, key=f'End Date - {metric}')
|
129 |
-
|
130 |
-
|
131 |
-
# Get the dates with available data for that field when the user clicks the button
|
132 |
-
# get_dates_button = st.button(f'Get Dates for Field {field_name} (Field ID: {field_name}) in {year} (from {start_date} to {end_date})',
|
133 |
-
# key=f'Get Dates Button - {metric}',
|
134 |
-
# help='Click to get the dates with available data for the selected field',
|
135 |
-
# use_container_width=True, type='primary')
|
136 |
-
# if get_dates_button:
|
137 |
-
if True:
|
138 |
-
start_date = '2024-01-01'
|
139 |
-
today = datetime.today()
|
140 |
-
end_date = today.strftime('%Y-%m-%d')
|
141 |
-
year = '2024'
|
142 |
-
|
143 |
-
dates = get_and_cache_available_dates(src_df, field_name, year, start_date, end_date)
|
144 |
-
# Add None to the end of the list to be used as a default value
|
145 |
-
# dates.append(-1)
|
146 |
-
#sort the dates from earliest to today
|
147 |
-
dates = sorted(dates)
|
148 |
-
|
149 |
-
#Add the dates to the session state
|
150 |
-
st.session_state['dates'] = dates
|
151 |
-
|
152 |
-
# Display the dropdown menu
|
153 |
-
if len(dates) > 0:
|
154 |
-
date = st.selectbox('Select Observation Date: ', dates, index=len(dates)-1, key=f'Select Date Dropdown Menu - {metric}')
|
155 |
-
if date != -1:
|
156 |
-
st.write('You selected:', date)
|
157 |
-
#Add the date to the session state
|
158 |
-
st.session_state['date'] = date
|
159 |
-
else:
|
160 |
-
st.write('Please Select A Date')
|
161 |
-
else:
|
162 |
-
st.info('No dates available for the selected field and dates range, select a different range or click the button to fetch the dates again')
|
163 |
-
|
164 |
-
|
165 |
-
st.markdown('---')
|
166 |
-
st.header('Show Field Data')
|
167 |
-
|
168 |
-
# If a field and a date are selected, display the field data
|
169 |
-
if date != -1:
|
170 |
-
|
171 |
-
# Get the field data at the selected date
|
172 |
-
with st.spinner('Loading Field Data...'):
|
173 |
-
# Get the metric data and cloud cover data for the selected field and date
|
174 |
-
metric_data = get_cuarted_df_for_field(src_df, field_name, date, metric, client_name)
|
175 |
-
cloud_cover_data = get_cuarted_df_for_field(src_df, field_name, date, 'CLP', client_name)
|
176 |
-
|
177 |
-
#Merge the metric and cloud cover data on the geometry column
|
178 |
-
field_data = metric_data.merge(cloud_cover_data, on='geometry')
|
179 |
-
|
180 |
-
# Display the field data
|
181 |
-
st.write(f'Field Data for {field_name} (Field ID: {field_name}) on {date}')
|
182 |
-
st.write(field_data.head(2))
|
183 |
-
|
184 |
-
#Get Avarage Cloud Cover
|
185 |
-
avg_clp = field_data[f'CLP_{date}'].mean() *100
|
186 |
-
|
187 |
-
# If the avarage cloud cover is greater than 80%, display a warning message
|
188 |
-
if avg_clp > 80:
|
189 |
-
st.warning(f'⚠️ The Avarage Cloud Cover is {avg_clp}%')
|
190 |
-
st.info('Please Select A Different Date')
|
191 |
-
|
192 |
-
## Generate the field data Map ##
|
193 |
-
|
194 |
-
#Title, Colormap and Legend
|
195 |
-
title = f'{metric} for selected field {field_name} (Field ID: {field_name}) in {date}'
|
196 |
-
cmap = 'RdYlGn'
|
197 |
-
|
198 |
-
# Create a map of the field data
|
199 |
-
field_data_map = field_data.explore(
|
200 |
-
column=f'{metric}_{date}',
|
201 |
-
cmap=cmap,
|
202 |
-
legend=True,
|
203 |
-
vmin=0,
|
204 |
-
vmax=1,
|
205 |
-
marker_type='circle', marker_kwds={'radius':5.3, 'fill':True})
|
206 |
-
|
207 |
-
# Add Google Satellite as a base map
|
208 |
-
google_map = utils.basemaps['Google Satellite']
|
209 |
-
google_map.add_to(field_data_map)
|
210 |
-
|
211 |
-
# Display the map
|
212 |
-
st_folium(field_data_map, width = 725, key=f'Field Data Map - {metric}')
|
213 |
-
|
214 |
-
|
215 |
-
#Dwonload Links
|
216 |
-
|
217 |
-
# If the field data is not empty, display the download links
|
218 |
-
if len(field_data) > 0:
|
219 |
-
# Create two columns for the download links
|
220 |
-
download_as_shp_col, download_as_tiff_col = st.columns(2)
|
221 |
-
|
222 |
-
# Create a shapefile of the field data and add a download link
|
223 |
-
with download_as_shp_col:
|
224 |
-
|
225 |
-
#Set the shapefile name and path based on the field id, metric and date
|
226 |
-
extension = 'shp'
|
227 |
-
shapefilename = f"{field_name}_{metric}_{date}.{extension}"
|
228 |
-
path = f'./shapefiles/{field_name}/{metric}/{extension}'
|
229 |
-
|
230 |
-
# Create the target directory if it doesn't exist
|
231 |
-
os.makedirs(path, exist_ok=True)
|
232 |
-
|
233 |
-
# Save the field data as a shapefile
|
234 |
-
field_data.to_file(f'{path}/{shapefilename}')
|
235 |
-
|
236 |
-
# Create a zip file of the shapefile
|
237 |
-
files = []
|
238 |
-
for i in os.listdir(path):
|
239 |
-
if os.path.isfile(os.path.join(path,i)):
|
240 |
-
if i[0:len(shapefilename)] == shapefilename:
|
241 |
-
files.append(os.path.join(path,i))
|
242 |
-
zipFileName = f'{path}/{field_name}_{metric}_{date}.zip'
|
243 |
-
zipObj = ZipFile(zipFileName, 'w')
|
244 |
-
for file in files:
|
245 |
-
zipObj.write(file)
|
246 |
-
zipObj.close()
|
247 |
-
|
248 |
-
# Add a download link for the zip file
|
249 |
-
with open(zipFileName, 'rb') as f:
|
250 |
-
st.download_button('Download as ShapeFile', f,file_name=zipFileName)
|
251 |
-
|
252 |
-
# Get the tiff file path and create a download link
|
253 |
-
with download_as_tiff_col:
|
254 |
-
#get the tiff file path
|
255 |
-
tiff_path = utils.get_masked_location_img_path(client_name, metric, date, field_name)
|
256 |
-
# Add a download link for the tiff file
|
257 |
-
donwnload_filename = f'{metric}_{field_name}_{date}.tiff'
|
258 |
-
with open(tiff_path, 'rb') as f:
|
259 |
-
st.download_button('Download as Tiff File', f,file_name=donwnload_filename)
|
260 |
-
|
261 |
-
else:
|
262 |
-
st.info('Please Select A Field and A Date')
|
263 |
-
|
264 |
-
|
265 |
-
# st.markdown('---')
|
266 |
-
# st.header('Show Historic Averages')
|
267 |
-
|
268 |
-
|
269 |
-
# #Let the user select the year, start date and end date
|
270 |
-
# with st.expander('Select Year, Start Date and End Date'):
|
271 |
-
# # Get the year
|
272 |
-
# years = [f'20{i}' for i in range(22, 25)]
|
273 |
-
# year = st.selectbox('Select Year: ', years, index=len(years)-2, key=f'Select Year Dropdown Menu - {metric}- Historic Averages')
|
274 |
-
|
275 |
-
# # Set the start and end dates to the first and last dates of the year
|
276 |
-
# start_date = f'{year}-01-01'
|
277 |
-
# end_date = f'{year}-12-31'
|
278 |
-
|
279 |
-
# # Get the dates for historic averages
|
280 |
-
# historic_avarages_dates_for_field = get_and_cache_available_dates(src_df, field_name, year, start_date, end_date)
|
281 |
-
|
282 |
-
# # Convert the dates to datetime objects and sort them ascendingly then convert them back to strings
|
283 |
-
# historic_avarages_dates_for_field = [datetime.strptime(date, '%Y-%m-%d') for date in historic_avarages_dates_for_field]
|
284 |
-
# historic_avarages_dates_for_field.sort()
|
285 |
-
# historic_avarages_dates_for_field = [datetime.strftime(date, '%Y-%m-%d') for date in historic_avarages_dates_for_field]
|
286 |
-
|
287 |
-
# # Get the number of dates
|
288 |
-
# num_historic_dates = len(historic_avarages_dates_for_field)
|
289 |
-
# st.write(f' Found {num_historic_dates} dates for field {field_name} in {year} (from {start_date} to {end_date})')
|
290 |
-
|
291 |
-
# # Display the historic averages when the user clicks the button
|
292 |
-
# display_historic_avgs_button = st.button(f'Display Historic Averages for Field {field_name} (Field ID: {field_name}) in {year} (from {start_date} to {end_date})',
|
293 |
-
# key=f'Display Historic Averages Button - {metric}',
|
294 |
-
# help='Click to display the historic averages for the selected field',
|
295 |
-
# use_container_width=True, type='primary')
|
296 |
-
|
297 |
-
# # If the button is clicked, display the historic averages
|
298 |
-
# if display_historic_avgs_button:
|
299 |
-
|
300 |
-
# #Initlize the historic averages cache dir and file path
|
301 |
-
# historic_avarages_cache_dir = './historic_avarages_cache'
|
302 |
-
# historic_avarages_cache_path = f'{historic_avarages_cache_dir}/historic_avarages_cache.joblib'
|
303 |
-
# historic_avarages_cache_clp_path = f'{historic_avarages_cache_dir}/historic_avarages_cache_clp.joblib'
|
304 |
-
|
305 |
-
# # Load the historic averages cache if it exists, else create it
|
306 |
-
# if os.path.exists(historic_avarages_cache_path):
|
307 |
-
# historic_avarages_cache = joblib.load(historic_avarages_cache_path)
|
308 |
-
# else:
|
309 |
-
# os.makedirs(historic_avarages_cache_dir, exist_ok=True)
|
310 |
-
# joblib.dump({}, historic_avarages_cache_path)
|
311 |
-
# historic_avarages_cache = joblib.load(historic_avarages_cache_path)
|
312 |
-
# if os.path.exists(historic_avarages_cache_clp_path):
|
313 |
-
# historic_avarages_cache_clp = joblib.load(historic_avarages_cache_clp_path)
|
314 |
-
# else:
|
315 |
-
# os.makedirs(historic_avarages_cache_dir, exist_ok=True)
|
316 |
-
# joblib.dump({}, historic_avarages_cache_clp_path)
|
317 |
-
# historic_avarages_cache_clp = joblib.load(historic_avarages_cache_clp_path)
|
318 |
-
|
319 |
-
# found_in_cache = False
|
320 |
-
# if client_name not in historic_avarages_cache:
|
321 |
-
# historic_avarages_cache[client_name] = {}
|
322 |
-
# if metric not in historic_avarages_cache[client_name]:
|
323 |
-
# historic_avarages_cache[client_name][metric] = {}
|
324 |
-
# if field_name not in historic_avarages_cache[client_name][metric]:
|
325 |
-
# historic_avarages_cache[client_name][metric][field_name] = {}
|
326 |
-
# if year not in historic_avarages_cache[client_name][metric][field_name]:
|
327 |
-
# historic_avarages_cache[client_name][metric][field_name][year] = {}
|
328 |
-
# if len(historic_avarages_cache[client_name][metric][field_name][year]) > 0:
|
329 |
-
# found_in_cache = True
|
330 |
-
|
331 |
-
|
332 |
-
# #Check if the field and year are in the cache_clp for the current metric and client
|
333 |
-
# found_in_cache_clp = False
|
334 |
-
# if client_name not in historic_avarages_cache_clp:
|
335 |
-
# historic_avarages_cache_clp[client_name] = {}
|
336 |
-
# if 'CLP' not in historic_avarages_cache_clp[client_name]:
|
337 |
-
# historic_avarages_cache_clp[client_name]['CLP'] = {}
|
338 |
-
# if field_name not in historic_avarages_cache_clp[client_name]['CLP']:
|
339 |
-
# historic_avarages_cache_clp[client_name]['CLP'][field_name] = {}
|
340 |
-
# if year not in historic_avarages_cache_clp[client_name]['CLP'][field_name]:
|
341 |
-
# historic_avarages_cache_clp[client_name]['CLP'][field_name][year] = {}
|
342 |
-
# if len(historic_avarages_cache_clp[client_name]['CLP'][field_name][year]) > 0:
|
343 |
-
# found_in_cache_clp = True
|
344 |
-
|
345 |
-
|
346 |
-
# # If Found in cache, get the historic averages from the cache
|
347 |
-
# if found_in_cache and found_in_cache_clp:
|
348 |
-
# st.info('Found Historic Averages in Cache')
|
349 |
-
# historic_avarages = historic_avarages_cache[client_name][metric][field_name][year]['historic_avarages']
|
350 |
-
# historic_avarages_dates = historic_avarages_cache[client_name][metric][field_name][year]['historic_avarages_dates']
|
351 |
-
# historic_avarages_clp = historic_avarages_cache_clp[client_name]['CLP'][field_name][year]['historic_avarages_clp']
|
352 |
-
|
353 |
-
# # Else, calculate the historic averages and add them to the cache
|
354 |
-
# else:
|
355 |
-
# st.info('Calculating Historic Averages...')
|
356 |
-
|
357 |
-
|
358 |
-
# #Empty lists for the historic averages , dates and cloud cover
|
359 |
-
# historic_avarages = []
|
360 |
-
# historic_avarages_dates = []
|
361 |
-
# historic_avarages_clp = []
|
362 |
-
|
363 |
-
# # Get the historic averages
|
364 |
-
# dates_for_field_bar = st.progress(0)
|
365 |
-
# with st.spinner('Calculating Historic Averages...'):
|
366 |
-
# with st.empty():
|
367 |
-
# for i in range(num_historic_dates):
|
368 |
-
# # Get the historic average for the current date
|
369 |
-
# current_date = historic_avarages_dates_for_field[i]
|
370 |
-
# current_df = get_cuarted_df_for_field(src_df, field_name, current_date, metric, client_name)
|
371 |
-
# current_df_clp = get_cuarted_df_for_field(src_df, field_name, current_date, 'CLP', client_name)
|
372 |
-
# current_avg = current_df[f'{metric}_{current_date}'].mean()
|
373 |
-
# current_avg_clp = current_df_clp[f'CLP_{current_date}'].mean()
|
374 |
-
# # Add the historic average and date to the lists
|
375 |
-
# historic_avarages.append(current_avg)
|
376 |
-
# historic_avarages_dates.append(current_date)
|
377 |
-
# historic_avarages_clp.append(current_avg_clp)
|
378 |
-
# # Update the progress bar
|
379 |
-
# dates_for_field_bar.progress((i + 1)/(num_historic_dates))
|
380 |
-
|
381 |
-
# # Create a plot of the historic averages with the cloud cover as dashed line and dates as x axis (rotated 90 degrees when needed)
|
382 |
-
# fig, ax = plt.subplots(figsize=(5, 3))
|
383 |
-
|
384 |
-
# # Set the x axis ticks and labels
|
385 |
-
# x = historic_avarages_dates
|
386 |
-
# x_ticks = [i for i in range(len(x))]
|
387 |
-
# ax.set_xticks(x_ticks)
|
388 |
-
|
389 |
-
# #Set rotation to 90 degrees if the number of dates is greater than 10
|
390 |
-
# rot = 0 if len(x) < 10 else 90
|
391 |
-
# ax.set_xticklabels(x, rotation=rot)
|
392 |
-
|
393 |
-
# # Set the y axis ticks and labels
|
394 |
-
# y1 = historic_avarages
|
395 |
-
# y2 = historic_avarages_clp
|
396 |
-
# y_ticks = [i/10 for i in range(11)]
|
397 |
-
# ax.set_yticks(y_ticks)
|
398 |
-
# ax.set_yticklabels(y_ticks)
|
399 |
-
|
400 |
-
# # Plot the historic averages and cloud cover
|
401 |
-
# ax.plot(x_ticks, y1, label=f'{metric} Historic Averages')
|
402 |
-
# ax.plot(x_ticks, y2, '--', label='Cloud Cover')
|
403 |
-
# ax.legend()
|
404 |
-
|
405 |
-
# # Set the title and axis labels
|
406 |
-
# ax.set_title(f'{metric} Historic Averages for {field_name} (Field ID: {field_name}) in {year}')
|
407 |
-
# ax.set_xlabel('Date')
|
408 |
-
# ax.set_ylabel(f'{metric} Historic Averages')
|
409 |
-
|
410 |
-
# # Display the plot
|
411 |
-
# st.pyplot(fig, use_container_width=True)
|
412 |
-
|
413 |
-
# # Add the historic averages to the cache
|
414 |
-
# historic_avarages_cache[client_name][metric][field_name][year]['historic_avarages'] = historic_avarages
|
415 |
-
# historic_avarages_cache[client_name][metric][field_name][year]['historic_avarages_dates'] = historic_avarages_dates
|
416 |
-
# historic_avarages_cache_clp[client_name]['CLP'][field_name][year]['historic_avarages_clp'] = historic_avarages_clp
|
417 |
-
# # Save the cache
|
418 |
-
# joblib.dump(historic_avarages_cache, historic_avarages_cache_path)
|
419 |
-
# joblib.dump(historic_avarages_cache_clp, historic_avarages_cache_clp_path)
|
420 |
-
# # Tell the user that the historic averages are saved in the cache
|
421 |
-
# st.info('Historic Averages Saved in Cache')
|
422 |
-
# st.write(f'Cache Path: {historic_avarages_cache_path}')
|
423 |
-
# st.write(f'Cache CLP Path: {historic_avarages_cache_clp_path}')
|
424 |
-
|
425 |
-
|
426 |
-
# # Display the historic averages in nice plotly plot
|
427 |
-
# fig = make_subplots(specs=[[{"secondary_y": True}]])
|
428 |
-
|
429 |
-
# # Add the historic averages to the plot
|
430 |
-
# fig.add_trace(
|
431 |
-
# go.Scatter(x=historic_avarages_dates, y=historic_avarages, name=f'{metric} Historic Averages'),
|
432 |
-
# secondary_y=False,
|
433 |
-
# )
|
434 |
-
|
435 |
-
# # Add the cloud cover to the plot
|
436 |
-
# fig.add_trace(
|
437 |
-
# go.Scatter(x=historic_avarages_dates, y=historic_avarages_clp, name='Cloud Cover'),
|
438 |
-
# secondary_y=True,
|
439 |
-
# )
|
440 |
-
|
441 |
-
# # Set the title and axis labels
|
442 |
-
# fig.update_layout(title_text=f'{metric} Historic Averages for {field_name} (Field ID: {field_name}) in {year}')
|
443 |
-
# fig.update_xaxes(title_text='Date')
|
444 |
-
# fig.update_yaxes(title_text=f'{metric} Historic Averages', secondary_y=False)
|
445 |
-
# fig.update_yaxes(title_text='Cloud Cover', secondary_y=True)
|
446 |
-
|
447 |
-
# # Display the plot
|
448 |
-
# st.plotly_chart(fig)
|
449 |
-
|
450 |
-
|
451 |
-
# st.markdown('---')
|
452 |
-
# st.header('Show Historic GIF')
|
453 |
-
|
454 |
-
|
455 |
-
# #Let the user select the year, start date and end date of the GIF
|
456 |
-
# with st.expander('Select Year, Start Date and End Date of the GIF'):
|
457 |
-
# # Get the year
|
458 |
-
# years = [f'20{i}' for i in range(16, 23)]
|
459 |
-
# year = st.selectbox('Select Year: ', years, index=len(years)-2, key=f'Select Year Dropdown Menu - {metric}- Historic Averages GIF')
|
460 |
-
|
461 |
-
# # Set the start and end dates to the first and last dates of the year
|
462 |
-
# start_date = f'{year}-01-01'
|
463 |
-
# end_date = f'{year}-12-31'
|
464 |
-
|
465 |
-
# # Get the dates for historic GIF
|
466 |
-
# historic_avarages_dates_for_field = get_and_cache_available_dates(src_df, field_name, year, start_date, end_date)
|
467 |
-
|
468 |
-
# # Convert the dates to datetime objects and sort them ascendingly then convert them back to strings
|
469 |
-
# historic_avarages_dates_for_field = [datetime.strptime(date, '%Y-%m-%d') for date in historic_avarages_dates_for_field]
|
470 |
-
# historic_avarages_dates_for_field.sort()
|
471 |
-
# historic_avarages_dates_for_field = [datetime.strftime(date, '%Y-%m-%d') for date in historic_avarages_dates_for_field]
|
472 |
-
|
473 |
-
# # Get the number of dates
|
474 |
-
# num_historic_dates = len(historic_avarages_dates_for_field)
|
475 |
-
# st.write(f' Found {num_historic_dates} dates for field {field_name} in {year} (from {start_date} to {end_date})')
|
476 |
-
|
477 |
-
# # Display the historic GIF when the user clicks the button
|
478 |
-
# display_historic_GIF_button = st.button(f'Display Historic GIF for Field {field_name} (Field ID: {field_name}) in {year} (from {start_date} to {end_date})',
|
479 |
-
# key=f'Display Historic GIF Button - {metric}',
|
480 |
-
# help='Click to display the historic GIF for the selected field',
|
481 |
-
# use_container_width=True, type='primary')
|
482 |
-
|
483 |
-
# # If the button is clicked, display the historic GIF
|
484 |
-
# if display_historic_GIF_button:
|
485 |
-
|
486 |
-
# #Initlize the historic GIF imgs and dates
|
487 |
-
# st.info('Generating Historic GIF...')
|
488 |
-
# historic_imgs = []
|
489 |
-
# historic_imgs_dates = []
|
490 |
-
|
491 |
-
# # Gen the historic GIF
|
492 |
-
# dates_for_field_bar = st.progress(0)
|
493 |
-
# with st.spinner('Generating Historic GIF...'):
|
494 |
-
# with st.empty():
|
495 |
-
# for i in range(num_historic_dates):
|
496 |
-
# current_date = historic_avarages_dates_for_field[i]
|
497 |
-
# current_df = get_cuarted_df_for_field(src_df, field_name, current_date, metric, client_name)
|
498 |
-
# historic_imgs.append(current_df)
|
499 |
-
# historic_imgs_dates.append(current_date)
|
500 |
-
# dates_for_field_bar.progress((i + 1)/(num_historic_dates))
|
501 |
-
|
502 |
-
# # Create a fig of the historic Img
|
503 |
-
# fig, ax = plt.subplots(figsize=(10, 5))
|
504 |
-
|
505 |
-
# # Get the current img
|
506 |
-
# current_df_lat_lon = utils.add_lat_lon_to_gdf_from_geometry(current_df)
|
507 |
-
# current_img = utils.gdf_column_to_one_band_array(current_df_lat_lon, f'{metric}_{current_date}')
|
508 |
-
|
509 |
-
# # Plot the historic Img
|
510 |
-
# title = f'{metric} for selected field {field_name} (Field ID: {field_name}) in {current_date}'
|
511 |
-
# ax.imshow(current_img)
|
512 |
-
# ax.set_title(title)
|
513 |
-
|
514 |
-
# # Display the plot
|
515 |
-
# st.pyplot(fig)
|
516 |
-
|
517 |
-
# # Create the historic GIF
|
518 |
-
# historic_GIF_name = f'{metric}_{field_name}_{year}.gif'
|
519 |
-
# st.write('Creating Historic GIF...', historic_GIF_name)
|
520 |
-
|
521 |
-
|
522 |
-
def monitor_fields():
|
523 |
-
current_user = greeting("Let's take a look how these fields are doing")
|
524 |
-
if os.path.exists(f"fields_{current_user}.parquet"):
|
525 |
-
gdf = gpd.read_parquet(f"fields_{current_user}.parquet")
|
526 |
-
else:
|
527 |
-
st.info("No Fields Added Yet!")
|
528 |
-
return
|
529 |
-
# st.info("Hover over the field to show the properties or check the Existing Fields List below")
|
530 |
-
# fields_map = gdf.explore()
|
531 |
-
# sat_basemap = utils.basemaps['Google Satellite']
|
532 |
-
# sat_basemap.add_to(fields_map)
|
533 |
-
# folium.LayerControl().add_to(fields_map)
|
534 |
-
# # output = st_folium(fields_map, key="edit_map", height=300, width=600)
|
535 |
-
# folium_static(fields_map, height=300, width=600)
|
536 |
-
|
537 |
-
with st.expander("Existing Fields List", expanded=False):
|
538 |
-
st.write(gdf)
|
539 |
-
|
540 |
-
field_name = select_field(gdf)
|
541 |
-
if field_name == "Select Field":
|
542 |
-
st.info("No Field Selected Yet!")
|
543 |
-
|
544 |
-
else:
|
545 |
-
with st.expander("Metrics Explanation", expanded=False):
|
546 |
-
st.write("NDVI: Normalized Difference Vegetation Index, Mainly used to monitor the health of vegetation")
|
547 |
-
st.write("LAI: Leaf Area Index, Mainly used to monitor the productivity of vegetation")
|
548 |
-
st.write("CAB: Chlorophyll Absorption in the Blue band, Mainly used to monitor the chlorophyll content in vegetation")
|
549 |
-
st.write("NDMI: Normalized Difference Moisture Index, Mainly used to monitor the moisture content in vegetation")
|
550 |
-
st.success("More metrics and analysis features will be added soon")
|
551 |
-
metric = st.radio("Select Metric to Monitor", ["NDVI", "LAI", "CAB", "NDMI"], key="metric", index=0, help="Select the metric to monitor")
|
552 |
-
st.write(f"Monitoring {metric} for {field_name}")
|
553 |
-
|
554 |
-
track(metric, field_name, gdf, current_user)
|
555 |
-
|
556 |
-
|
557 |
-
|
558 |
-
|
559 |
-
if __name__ == '__main__':
|
560 |
-
check_authentication()
|
561 |
-
monitor_fields()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pag/monitor.py
CHANGED
@@ -78,12 +78,6 @@ def get_cuarted_df_for_field(df, field, date, metric, clientName):
|
|
78 |
return curated_df
|
79 |
|
80 |
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
def get_cuarted_df_for_field(df, field, date, metric, clientName):
|
88 |
curated_date_path = utils.get_curated_location_img_path(clientName, metric, date, field)
|
89 |
if curated_date_path is not None:
|
@@ -109,31 +103,6 @@ def track(metric, field_name, src_df, client_name):
|
|
109 |
else:
|
110 |
date = st.session_state['date']
|
111 |
|
112 |
-
# Give the user the option to select year, start date and end date
|
113 |
-
# with st.expander('Select Year, Start Date and End Date'):
|
114 |
-
# # Get the year
|
115 |
-
# years = [f'20{i}' for i in range(22, 25)]
|
116 |
-
# year = st.selectbox('Select Year: ', years, index=len(years)-2, key=f'Select Year Dropdown Menu - {metric}')
|
117 |
-
|
118 |
-
# # Set the min, max and default values for start and end dates
|
119 |
-
# min_val = f'{year}-01-01'
|
120 |
-
# max_val = f'{year}-12-31'
|
121 |
-
# default_val = f'{year}-11-01'
|
122 |
-
# min_val = datetime.strptime(min_val, '%Y-%m-%d')
|
123 |
-
# max_val = datetime.strptime(max_val, '%Y-%m-%d')
|
124 |
-
# default_val = datetime.strptime(default_val, '%Y-%m-%d')
|
125 |
-
|
126 |
-
# # Get the start and end dates
|
127 |
-
# start_date = st.date_input('Start Date', value=default_val, min_value=min_val, max_value=max_val, key=f'Start Date - {metric}')
|
128 |
-
# end_date = st.date_input('End Date', value=max_val, min_value=min_val, max_value=max_val, key=f'End Date - {metric}')
|
129 |
-
|
130 |
-
|
131 |
-
# Get the dates with available data for that field when the user clicks the button
|
132 |
-
# get_dates_button = st.button(f'Get Dates for Field {field_name} (Field ID: {field_name}) in {year} (from {start_date} to {end_date})',
|
133 |
-
# key=f'Get Dates Button - {metric}',
|
134 |
-
# help='Click to get the dates with available data for the selected field',
|
135 |
-
# use_container_width=True, type='primary')
|
136 |
-
# if get_dates_button:
|
137 |
if True:
|
138 |
start_date = '2024-01-01'
|
139 |
today = datetime.today()
|
@@ -142,7 +111,6 @@ def track(metric, field_name, src_df, client_name):
|
|
142 |
|
143 |
dates = get_and_cache_available_dates(src_df, field_name, year, start_date, end_date)
|
144 |
# Add None to the end of the list to be used as a default value
|
145 |
-
# dates.append(-1)
|
146 |
#sort the dates from earliest to today
|
147 |
dates = sorted(dates)
|
148 |
|
@@ -260,264 +228,7 @@ def track(metric, field_name, src_df, client_name):
|
|
260 |
|
261 |
else:
|
262 |
st.info('Please Select A Field and A Date')
|
263 |
-
|
264 |
-
|
265 |
-
# st.markdown('---')
|
266 |
-
# st.header('Show Historic Averages')
|
267 |
-
|
268 |
-
|
269 |
-
# #Let the user select the year, start date and end date
|
270 |
-
# with st.expander('Select Year, Start Date and End Date'):
|
271 |
-
# # Get the year
|
272 |
-
# years = [f'20{i}' for i in range(22, 25)]
|
273 |
-
# year = st.selectbox('Select Year: ', years, index=len(years)-2, key=f'Select Year Dropdown Menu - {metric}- Historic Averages')
|
274 |
-
|
275 |
-
# # Set the start and end dates to the first and last dates of the year
|
276 |
-
# start_date = f'{year}-01-01'
|
277 |
-
# end_date = f'{year}-12-31'
|
278 |
-
|
279 |
-
# # Get the dates for historic averages
|
280 |
-
# historic_avarages_dates_for_field = get_and_cache_available_dates(src_df, field_name, year, start_date, end_date)
|
281 |
-
|
282 |
-
# # Convert the dates to datetime objects and sort them ascendingly then convert them back to strings
|
283 |
-
# historic_avarages_dates_for_field = [datetime.strptime(date, '%Y-%m-%d') for date in historic_avarages_dates_for_field]
|
284 |
-
# historic_avarages_dates_for_field.sort()
|
285 |
-
# historic_avarages_dates_for_field = [datetime.strftime(date, '%Y-%m-%d') for date in historic_avarages_dates_for_field]
|
286 |
-
|
287 |
-
# # Get the number of dates
|
288 |
-
# num_historic_dates = len(historic_avarages_dates_for_field)
|
289 |
-
# st.write(f' Found {num_historic_dates} dates for field {field_name} in {year} (from {start_date} to {end_date})')
|
290 |
-
|
291 |
-
# # Display the historic averages when the user clicks the button
|
292 |
-
# display_historic_avgs_button = st.button(f'Display Historic Averages for Field {field_name} (Field ID: {field_name}) in {year} (from {start_date} to {end_date})',
|
293 |
-
# key=f'Display Historic Averages Button - {metric}',
|
294 |
-
# help='Click to display the historic averages for the selected field',
|
295 |
-
# use_container_width=True, type='primary')
|
296 |
-
|
297 |
-
# # If the button is clicked, display the historic averages
|
298 |
-
# if display_historic_avgs_button:
|
299 |
-
|
300 |
-
# #Initlize the historic averages cache dir and file path
|
301 |
-
# historic_avarages_cache_dir = './historic_avarages_cache'
|
302 |
-
# historic_avarages_cache_path = f'{historic_avarages_cache_dir}/historic_avarages_cache.joblib'
|
303 |
-
# historic_avarages_cache_clp_path = f'{historic_avarages_cache_dir}/historic_avarages_cache_clp.joblib'
|
304 |
-
|
305 |
-
# # Load the historic averages cache if it exists, else create it
|
306 |
-
# if os.path.exists(historic_avarages_cache_path):
|
307 |
-
# historic_avarages_cache = joblib.load(historic_avarages_cache_path)
|
308 |
-
# else:
|
309 |
-
# os.makedirs(historic_avarages_cache_dir, exist_ok=True)
|
310 |
-
# joblib.dump({}, historic_avarages_cache_path)
|
311 |
-
# historic_avarages_cache = joblib.load(historic_avarages_cache_path)
|
312 |
-
# if os.path.exists(historic_avarages_cache_clp_path):
|
313 |
-
# historic_avarages_cache_clp = joblib.load(historic_avarages_cache_clp_path)
|
314 |
-
# else:
|
315 |
-
# os.makedirs(historic_avarages_cache_dir, exist_ok=True)
|
316 |
-
# joblib.dump({}, historic_avarages_cache_clp_path)
|
317 |
-
# historic_avarages_cache_clp = joblib.load(historic_avarages_cache_clp_path)
|
318 |
-
|
319 |
-
# found_in_cache = False
|
320 |
-
# if client_name not in historic_avarages_cache:
|
321 |
-
# historic_avarages_cache[client_name] = {}
|
322 |
-
# if metric not in historic_avarages_cache[client_name]:
|
323 |
-
# historic_avarages_cache[client_name][metric] = {}
|
324 |
-
# if field_name not in historic_avarages_cache[client_name][metric]:
|
325 |
-
# historic_avarages_cache[client_name][metric][field_name] = {}
|
326 |
-
# if year not in historic_avarages_cache[client_name][metric][field_name]:
|
327 |
-
# historic_avarages_cache[client_name][metric][field_name][year] = {}
|
328 |
-
# if len(historic_avarages_cache[client_name][metric][field_name][year]) > 0:
|
329 |
-
# found_in_cache = True
|
330 |
-
|
331 |
-
|
332 |
-
# #Check if the field and year are in the cache_clp for the current metric and client
|
333 |
-
# found_in_cache_clp = False
|
334 |
-
# if client_name not in historic_avarages_cache_clp:
|
335 |
-
# historic_avarages_cache_clp[client_name] = {}
|
336 |
-
# if 'CLP' not in historic_avarages_cache_clp[client_name]:
|
337 |
-
# historic_avarages_cache_clp[client_name]['CLP'] = {}
|
338 |
-
# if field_name not in historic_avarages_cache_clp[client_name]['CLP']:
|
339 |
-
# historic_avarages_cache_clp[client_name]['CLP'][field_name] = {}
|
340 |
-
# if year not in historic_avarages_cache_clp[client_name]['CLP'][field_name]:
|
341 |
-
# historic_avarages_cache_clp[client_name]['CLP'][field_name][year] = {}
|
342 |
-
# if len(historic_avarages_cache_clp[client_name]['CLP'][field_name][year]) > 0:
|
343 |
-
# found_in_cache_clp = True
|
344 |
-
|
345 |
-
|
346 |
-
# # If Found in cache, get the historic averages from the cache
|
347 |
-
# if found_in_cache and found_in_cache_clp:
|
348 |
-
# st.info('Found Historic Averages in Cache')
|
349 |
-
# historic_avarages = historic_avarages_cache[client_name][metric][field_name][year]['historic_avarages']
|
350 |
-
# historic_avarages_dates = historic_avarages_cache[client_name][metric][field_name][year]['historic_avarages_dates']
|
351 |
-
# historic_avarages_clp = historic_avarages_cache_clp[client_name]['CLP'][field_name][year]['historic_avarages_clp']
|
352 |
-
|
353 |
-
# # Else, calculate the historic averages and add them to the cache
|
354 |
-
# else:
|
355 |
-
# st.info('Calculating Historic Averages...')
|
356 |
-
|
357 |
-
|
358 |
-
# #Empty lists for the historic averages , dates and cloud cover
|
359 |
-
# historic_avarages = []
|
360 |
-
# historic_avarages_dates = []
|
361 |
-
# historic_avarages_clp = []
|
362 |
-
|
363 |
-
# # Get the historic averages
|
364 |
-
# dates_for_field_bar = st.progress(0)
|
365 |
-
# with st.spinner('Calculating Historic Averages...'):
|
366 |
-
# with st.empty():
|
367 |
-
# for i in range(num_historic_dates):
|
368 |
-
# # Get the historic average for the current date
|
369 |
-
# current_date = historic_avarages_dates_for_field[i]
|
370 |
-
# current_df = get_cuarted_df_for_field(src_df, field_name, current_date, metric, client_name)
|
371 |
-
# current_df_clp = get_cuarted_df_for_field(src_df, field_name, current_date, 'CLP', client_name)
|
372 |
-
# current_avg = current_df[f'{metric}_{current_date}'].mean()
|
373 |
-
# current_avg_clp = current_df_clp[f'CLP_{current_date}'].mean()
|
374 |
-
# # Add the historic average and date to the lists
|
375 |
-
# historic_avarages.append(current_avg)
|
376 |
-
# historic_avarages_dates.append(current_date)
|
377 |
-
# historic_avarages_clp.append(current_avg_clp)
|
378 |
-
# # Update the progress bar
|
379 |
-
# dates_for_field_bar.progress((i + 1)/(num_historic_dates))
|
380 |
-
|
381 |
-
# # Create a plot of the historic averages with the cloud cover as dashed line and dates as x axis (rotated 90 degrees when needed)
|
382 |
-
# fig, ax = plt.subplots(figsize=(5, 3))
|
383 |
-
|
384 |
-
# # Set the x axis ticks and labels
|
385 |
-
# x = historic_avarages_dates
|
386 |
-
# x_ticks = [i for i in range(len(x))]
|
387 |
-
# ax.set_xticks(x_ticks)
|
388 |
-
|
389 |
-
# #Set rotation to 90 degrees if the number of dates is greater than 10
|
390 |
-
# rot = 0 if len(x) < 10 else 90
|
391 |
-
# ax.set_xticklabels(x, rotation=rot)
|
392 |
-
|
393 |
-
# # Set the y axis ticks and labels
|
394 |
-
# y1 = historic_avarages
|
395 |
-
# y2 = historic_avarages_clp
|
396 |
-
# y_ticks = [i/10 for i in range(11)]
|
397 |
-
# ax.set_yticks(y_ticks)
|
398 |
-
# ax.set_yticklabels(y_ticks)
|
399 |
-
|
400 |
-
# # Plot the historic averages and cloud cover
|
401 |
-
# ax.plot(x_ticks, y1, label=f'{metric} Historic Averages')
|
402 |
-
# ax.plot(x_ticks, y2, '--', label='Cloud Cover')
|
403 |
-
# ax.legend()
|
404 |
-
|
405 |
-
# # Set the title and axis labels
|
406 |
-
# ax.set_title(f'{metric} Historic Averages for {field_name} (Field ID: {field_name}) in {year}')
|
407 |
-
# ax.set_xlabel('Date')
|
408 |
-
# ax.set_ylabel(f'{metric} Historic Averages')
|
409 |
-
|
410 |
-
# # Display the plot
|
411 |
-
# st.pyplot(fig, use_container_width=True)
|
412 |
-
|
413 |
-
# # Add the historic averages to the cache
|
414 |
-
# historic_avarages_cache[client_name][metric][field_name][year]['historic_avarages'] = historic_avarages
|
415 |
-
# historic_avarages_cache[client_name][metric][field_name][year]['historic_avarages_dates'] = historic_avarages_dates
|
416 |
-
# historic_avarages_cache_clp[client_name]['CLP'][field_name][year]['historic_avarages_clp'] = historic_avarages_clp
|
417 |
-
# # Save the cache
|
418 |
-
# joblib.dump(historic_avarages_cache, historic_avarages_cache_path)
|
419 |
-
# joblib.dump(historic_avarages_cache_clp, historic_avarages_cache_clp_path)
|
420 |
-
# # Tell the user that the historic averages are saved in the cache
|
421 |
-
# st.info('Historic Averages Saved in Cache')
|
422 |
-
# st.write(f'Cache Path: {historic_avarages_cache_path}')
|
423 |
-
# st.write(f'Cache CLP Path: {historic_avarages_cache_clp_path}')
|
424 |
-
|
425 |
-
|
426 |
-
# # Display the historic averages in nice plotly plot
|
427 |
-
# fig = make_subplots(specs=[[{"secondary_y": True}]])
|
428 |
-
|
429 |
-
# # Add the historic averages to the plot
|
430 |
-
# fig.add_trace(
|
431 |
-
# go.Scatter(x=historic_avarages_dates, y=historic_avarages, name=f'{metric} Historic Averages'),
|
432 |
-
# secondary_y=False,
|
433 |
-
# )
|
434 |
-
|
435 |
-
# # Add the cloud cover to the plot
|
436 |
-
# fig.add_trace(
|
437 |
-
# go.Scatter(x=historic_avarages_dates, y=historic_avarages_clp, name='Cloud Cover'),
|
438 |
-
# secondary_y=True,
|
439 |
-
# )
|
440 |
-
|
441 |
-
# # Set the title and axis labels
|
442 |
-
# fig.update_layout(title_text=f'{metric} Historic Averages for {field_name} (Field ID: {field_name}) in {year}')
|
443 |
-
# fig.update_xaxes(title_text='Date')
|
444 |
-
# fig.update_yaxes(title_text=f'{metric} Historic Averages', secondary_y=False)
|
445 |
-
# fig.update_yaxes(title_text='Cloud Cover', secondary_y=True)
|
446 |
-
|
447 |
-
# # Display the plot
|
448 |
-
# st.plotly_chart(fig)
|
449 |
-
|
450 |
-
|
451 |
-
# st.markdown('---')
|
452 |
-
# st.header('Show Historic GIF')
|
453 |
-
|
454 |
-
|
455 |
-
# #Let the user select the year, start date and end date of the GIF
|
456 |
-
# with st.expander('Select Year, Start Date and End Date of the GIF'):
|
457 |
-
# # Get the year
|
458 |
-
# years = [f'20{i}' for i in range(16, 23)]
|
459 |
-
# year = st.selectbox('Select Year: ', years, index=len(years)-2, key=f'Select Year Dropdown Menu - {metric}- Historic Averages GIF')
|
460 |
-
|
461 |
-
# # Set the start and end dates to the first and last dates of the year
|
462 |
-
# start_date = f'{year}-01-01'
|
463 |
-
# end_date = f'{year}-12-31'
|
464 |
-
|
465 |
-
# # Get the dates for historic GIF
|
466 |
-
# historic_avarages_dates_for_field = get_and_cache_available_dates(src_df, field_name, year, start_date, end_date)
|
467 |
-
|
468 |
-
# # Convert the dates to datetime objects and sort them ascendingly then convert them back to strings
|
469 |
-
# historic_avarages_dates_for_field = [datetime.strptime(date, '%Y-%m-%d') for date in historic_avarages_dates_for_field]
|
470 |
-
# historic_avarages_dates_for_field.sort()
|
471 |
-
# historic_avarages_dates_for_field = [datetime.strftime(date, '%Y-%m-%d') for date in historic_avarages_dates_for_field]
|
472 |
-
|
473 |
-
# # Get the number of dates
|
474 |
-
# num_historic_dates = len(historic_avarages_dates_for_field)
|
475 |
-
# st.write(f' Found {num_historic_dates} dates for field {field_name} in {year} (from {start_date} to {end_date})')
|
476 |
-
|
477 |
-
# # Display the historic GIF when the user clicks the button
|
478 |
-
# display_historic_GIF_button = st.button(f'Display Historic GIF for Field {field_name} (Field ID: {field_name}) in {year} (from {start_date} to {end_date})',
|
479 |
-
# key=f'Display Historic GIF Button - {metric}',
|
480 |
-
# help='Click to display the historic GIF for the selected field',
|
481 |
-
# use_container_width=True, type='primary')
|
482 |
-
|
483 |
-
# # If the button is clicked, display the historic GIF
|
484 |
-
# if display_historic_GIF_button:
|
485 |
-
|
486 |
-
# #Initlize the historic GIF imgs and dates
|
487 |
-
# st.info('Generating Historic GIF...')
|
488 |
-
# historic_imgs = []
|
489 |
-
# historic_imgs_dates = []
|
490 |
-
|
491 |
-
# # Gen the historic GIF
|
492 |
-
# dates_for_field_bar = st.progress(0)
|
493 |
-
# with st.spinner('Generating Historic GIF...'):
|
494 |
-
# with st.empty():
|
495 |
-
# for i in range(num_historic_dates):
|
496 |
-
# current_date = historic_avarages_dates_for_field[i]
|
497 |
-
# current_df = get_cuarted_df_for_field(src_df, field_name, current_date, metric, client_name)
|
498 |
-
# historic_imgs.append(current_df)
|
499 |
-
# historic_imgs_dates.append(current_date)
|
500 |
-
# dates_for_field_bar.progress((i + 1)/(num_historic_dates))
|
501 |
-
|
502 |
-
# # Create a fig of the historic Img
|
503 |
-
# fig, ax = plt.subplots(figsize=(10, 5))
|
504 |
-
|
505 |
-
# # Get the current img
|
506 |
-
# current_df_lat_lon = utils.add_lat_lon_to_gdf_from_geometry(current_df)
|
507 |
-
# current_img = utils.gdf_column_to_one_band_array(current_df_lat_lon, f'{metric}_{current_date}')
|
508 |
-
|
509 |
-
# # Plot the historic Img
|
510 |
-
# title = f'{metric} for selected field {field_name} (Field ID: {field_name}) in {current_date}'
|
511 |
-
# ax.imshow(current_img)
|
512 |
-
# ax.set_title(title)
|
513 |
-
|
514 |
-
# # Display the plot
|
515 |
-
# st.pyplot(fig)
|
516 |
-
|
517 |
-
# # Create the historic GIF
|
518 |
-
# historic_GIF_name = f'{metric}_{field_name}_{year}.gif'
|
519 |
-
# st.write('Creating Historic GIF...', historic_GIF_name)
|
520 |
-
|
521 |
|
522 |
def monitor_fields():
|
523 |
current_user = greeting("Let's take a look how these fields are doing")
|
@@ -526,13 +237,7 @@ def monitor_fields():
|
|
526 |
else:
|
527 |
st.info("No Fields Added Yet!")
|
528 |
return
|
529 |
-
|
530 |
-
# fields_map = gdf.explore()
|
531 |
-
# sat_basemap = utils.basemaps['Google Satellite']
|
532 |
-
# sat_basemap.add_to(fields_map)
|
533 |
-
# folium.LayerControl().add_to(fields_map)
|
534 |
-
# # output = st_folium(fields_map, key="edit_map", height=300, width=600)
|
535 |
-
# folium_static(fields_map, height=300, width=600)
|
536 |
|
537 |
with st.expander("Existing Fields List", expanded=False):
|
538 |
st.write(gdf)
|
|
|
78 |
return curated_df
|
79 |
|
80 |
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
def get_cuarted_df_for_field(df, field, date, metric, clientName):
|
82 |
curated_date_path = utils.get_curated_location_img_path(clientName, metric, date, field)
|
83 |
if curated_date_path is not None:
|
|
|
103 |
else:
|
104 |
date = st.session_state['date']
|
105 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
if True:
|
107 |
start_date = '2024-01-01'
|
108 |
today = datetime.today()
|
|
|
111 |
|
112 |
dates = get_and_cache_available_dates(src_df, field_name, year, start_date, end_date)
|
113 |
# Add None to the end of the list to be used as a default value
|
|
|
114 |
#sort the dates from earliest to today
|
115 |
dates = sorted(dates)
|
116 |
|
|
|
228 |
|
229 |
else:
|
230 |
st.info('Please Select A Field and A Date')
|
231 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
232 |
|
233 |
def monitor_fields():
|
234 |
current_user = greeting("Let's take a look how these fields are doing")
|
|
|
237 |
else:
|
238 |
st.info("No Fields Added Yet!")
|
239 |
return
|
240 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
241 |
|
242 |
with st.expander("Existing Fields List", expanded=False):
|
243 |
st.write(gdf)
|
test.py
DELETED
@@ -1,43 +0,0 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
|
3 |
-
# Set page configuration
|
4 |
-
st.set_page_config(
|
5 |
-
page_title="Your App Title",
|
6 |
-
page_icon=":shark:",
|
7 |
-
layout="wide", # Use "wide" for expanded layout
|
8 |
-
initial_sidebar_state="expanded",
|
9 |
-
)
|
10 |
-
|
11 |
-
# def local_css(file_name):
|
12 |
-
# with open(file_name) "r") as f:
|
13 |
-
# st.markdown(f'<style>{f.read()}</style>', unsafe_allow_html=True)
|
14 |
-
|
15 |
-
# Write CSS to apply styles
|
16 |
-
def custom_css():
|
17 |
-
st.markdown("""
|
18 |
-
<style>
|
19 |
-
html, body, [data-testid="stAppViewContainer"] {
|
20 |
-
background-color: #000000; /* Black background */
|
21 |
-
color: #FFFFFF; /* White text color */
|
22 |
-
}
|
23 |
-
.stTextInput > label, .stSelectbox > label, .stRadio > label, .stCheckbox > label {
|
24 |
-
color: #CCCCCC; /* Lighter text for better contrast */
|
25 |
-
}
|
26 |
-
/* Additional styling can be added here */
|
27 |
-
</style>
|
28 |
-
""", unsafe_allow_html=True)
|
29 |
-
|
30 |
-
# Load CSS file (if you have a CSS file you prefer to use)
|
31 |
-
# local_css("styles.css")
|
32 |
-
|
33 |
-
# Apply custom CSS
|
34 |
-
custom_css()
|
35 |
-
|
36 |
-
# Your app code
|
37 |
-
st.title("Your Streamlit App")
|
38 |
-
st.write("This is a sample app with a black background.")
|
39 |
-
|
40 |
-
# Example of other components
|
41 |
-
st.text_input("Enter some text")
|
42 |
-
st.selectbox("Choose an option", ["Option 1", "Option 2", "Option 3"])
|
43 |
-
st.checkbox("Check me out")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|