cleaning up
Browse files- pag/monitor.py +13 -4
- requirements.txt +2 -1
pag/monitor.py
CHANGED
@@ -17,7 +17,13 @@ import grpc
|
|
17 |
import pb.timesfm_pb2_grpc
|
18 |
import pb.timesfm_pb2
|
19 |
from openai import OpenAI
|
|
|
20 |
import time
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
def check_authentication():
|
23 |
if not check_password():
|
@@ -30,8 +36,8 @@ config.instance_id = '352670fb-2edf-4abd-90c8-437485a2403e'
|
|
30 |
config.sh_client_id = 'ca95f10f-443c-4c60-9a36-98950292bb9b'
|
31 |
config.sh_client_secret = 'rNFGRxGNiNFrXJfGyHIkVRyGOrdWNsfI'
|
32 |
config.sh_timesfm_IP = "34.121.141.161"
|
33 |
-
|
34 |
-
|
35 |
|
36 |
def select_field(gdf):
|
37 |
st.markdown("""
|
@@ -309,6 +315,7 @@ def monitor_fields():
|
|
309 |
st.write(f"Press the button below to predict {metric} for the next 10 weeks")
|
310 |
subcol1, subcol2, subcol3 = st.columns(3)
|
311 |
if subcol2.button(f'Predict & Recommend'):
|
|
|
312 |
start_date = '2024-01-01'
|
313 |
today = datetime.today()
|
314 |
end_date = today.strftime('%Y-%m-%d')
|
@@ -328,6 +335,7 @@ def monitor_fields():
|
|
328 |
counter = counter + 100/(len(dates))
|
329 |
my_bar.progress(round(counter), text=f"Downloading Data for the last {len(dates)//4} months: {round(counter)}%")
|
330 |
|
|
|
331 |
# chart_data = pd.DataFrame(
|
332 |
# {
|
333 |
# "date": [metric[0] for metric in downloaded_prev_metrics],
|
@@ -379,6 +387,7 @@ def monitor_fields():
|
|
379 |
|
380 |
st.area_chart(prediction_chart_data, x="date", y=[f"history_{metric}_values", f"predicted_{metric}_values"])
|
381 |
|
|
|
382 |
crop = "Wheat"
|
383 |
|
384 |
try:
|
@@ -397,9 +406,9 @@ def monitor_fields():
|
|
397 |
frequency_penalty=0,
|
398 |
presence_penalty=0
|
399 |
)
|
400 |
-
st.
|
401 |
except:
|
402 |
-
st.
|
403 |
|
404 |
|
405 |
|
|
|
17 |
import pb.timesfm_pb2_grpc
|
18 |
import pb.timesfm_pb2
|
19 |
from openai import OpenAI
|
20 |
+
from dotenv import load_dotenv
|
21 |
import time
|
22 |
+
import dotenv
|
23 |
+
|
24 |
+
|
25 |
+
load_dotenv()
|
26 |
+
|
27 |
|
28 |
def check_authentication():
|
29 |
if not check_password():
|
|
|
36 |
config.sh_client_id = 'ca95f10f-443c-4c60-9a36-98950292bb9b'
|
37 |
config.sh_client_secret = 'rNFGRxGNiNFrXJfGyHIkVRyGOrdWNsfI'
|
38 |
config.sh_timesfm_IP = "34.121.141.161"
|
39 |
+
OpenAI_key = os.getenv('OPENAI_KEY')
|
40 |
+
client = OpenAI(api_key= OpenAI_key)
|
41 |
|
42 |
def select_field(gdf):
|
43 |
st.markdown("""
|
|
|
315 |
st.write(f"Press the button below to predict {metric} for the next 10 weeks")
|
316 |
subcol1, subcol2, subcol3 = st.columns(3)
|
317 |
if subcol2.button(f'Predict & Recommend'):
|
318 |
+
|
319 |
start_date = '2024-01-01'
|
320 |
today = datetime.today()
|
321 |
end_date = today.strftime('%Y-%m-%d')
|
|
|
335 |
counter = counter + 100/(len(dates))
|
336 |
my_bar.progress(round(counter), text=f"Downloading Data for the last {len(dates)//4} months: {round(counter)}%")
|
337 |
|
338 |
+
st.subheader('Predictions:')
|
339 |
# chart_data = pd.DataFrame(
|
340 |
# {
|
341 |
# "date": [metric[0] for metric in downloaded_prev_metrics],
|
|
|
387 |
|
388 |
st.area_chart(prediction_chart_data, x="date", y=[f"history_{metric}_values", f"predicted_{metric}_values"])
|
389 |
|
390 |
+
st.subheader('Recommendation:')
|
391 |
crop = "Wheat"
|
392 |
|
393 |
try:
|
|
|
406 |
frequency_penalty=0,
|
407 |
presence_penalty=0
|
408 |
)
|
409 |
+
st.caption(response.choices[0].message.content)
|
410 |
except:
|
411 |
+
st.code("Server Error: Could't generate recommendation!")
|
412 |
|
413 |
|
414 |
|
requirements.txt
CHANGED
@@ -12,4 +12,5 @@ streamlit==1.29.0
|
|
12 |
geopy==2.4.1
|
13 |
grpcio
|
14 |
grpcio-tools
|
15 |
-
openai
|
|
|
|
12 |
geopy==2.4.1
|
13 |
grpcio
|
14 |
grpcio-tools
|
15 |
+
openai
|
16 |
+
python-dotenv
|