Spaces:
Sleeping
Sleeping
Milestone 1
Browse files- fields_asim.parquet +0 -0
- history_asim.csv +3 -0
- pag/monitor.py +174 -121
- process.py +3 -3
- tokens.txt +11 -0
- tokens_expired.txt +6 -0
- utils.py +95 -0
fields_asim.parquet
ADDED
Binary file (6.15 kB). View file
|
|
history_asim.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
field_name,start_date,end_date,crop,irrigation_method
|
2 |
+
square_one,2024-05-01,2024-07-26,Wheat,Rainfed
|
3 |
+
uk_farm,2024-08-01,2024-10-31,Corn,Irrigated
|
pag/monitor.py
CHANGED
@@ -32,12 +32,16 @@ def check_authentication():
|
|
32 |
|
33 |
|
34 |
config = SHConfig()
|
35 |
-
config.instance_id = '
|
36 |
-
config.sh_client_id = '
|
37 |
-
config.sh_client_secret = '
|
38 |
config.sh_timesfm_IP = "34.121.141.161"
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
|
|
41 |
|
42 |
def select_field(gdf):
|
43 |
st.markdown("""
|
@@ -137,7 +141,7 @@ def download_date_data(df, field, dates, metric, clientName,):
|
|
137 |
|
138 |
|
139 |
def track(metric, field_name, src_df, client_name):
|
140 |
-
st.
|
141 |
dates = []
|
142 |
date = -1
|
143 |
if 'dates' not in st.session_state:
|
@@ -170,9 +174,10 @@ def track(metric, field_name, src_df, client_name):
|
|
170 |
.stSelectbox > div > div {cursor: pointer;}
|
171 |
</style>
|
172 |
""", unsafe_allow_html=True)
|
|
|
173 |
date = st.selectbox('Select Observation Date: ', dates, index=len(dates)-1, key=f'Select Date Dropdown Menu - {metric}')
|
174 |
if date != -1:
|
175 |
-
st.
|
176 |
#Add the date to the session state
|
177 |
st.session_state['date'] = date
|
178 |
else:
|
@@ -182,7 +187,7 @@ def track(metric, field_name, src_df, client_name):
|
|
182 |
|
183 |
|
184 |
st.markdown('---')
|
185 |
-
st.
|
186 |
|
187 |
# If a field and a date are selected, display the field data
|
188 |
if date != -1:
|
@@ -232,9 +237,10 @@ def track(metric, field_name, src_df, client_name):
|
|
232 |
)
|
233 |
|
234 |
# Add the base map
|
235 |
-
|
236 |
-
|
237 |
-
|
|
|
238 |
|
239 |
#Dwonload Links
|
240 |
|
@@ -287,10 +293,9 @@ def track(metric, field_name, src_df, client_name):
|
|
287 |
|
288 |
|
289 |
def monitor_fields():
|
|
|
290 |
row1,row2 = st.columns([1,2])
|
291 |
with row1:
|
292 |
-
st.title(":orange[Field Monitoring]")
|
293 |
-
|
294 |
current_user = greeting("Let's take a look how these fields are doing")
|
295 |
if os.path.exists(f"fields_{current_user}.parquet"):
|
296 |
gdf = gpd.read_parquet(f"fields_{current_user}.parquet")
|
@@ -299,125 +304,173 @@ def monitor_fields():
|
|
299 |
st.info("No Field Selected Yet!")
|
300 |
else:
|
301 |
metric = st.radio("Select Metric to Monitor", ["NDVI", "LAI", "CAB"], key="metric", index=0, help="Select the metric to monitor")
|
302 |
-
st.
|
303 |
with st.expander("Metrics Explanation", expanded=False):
|
304 |
st.write("NDVI: Normalized Difference Vegetation Index, Mainly used to monitor the health of vegetation")
|
305 |
st.write("LAI: Leaf Area Index, Mainly used to monitor the productivity of vegetation")
|
306 |
st.write("CAB: Chlorophyll Absorption in the Blue band, Mainly used to monitor the chlorophyll content in vegetation")
|
307 |
# st.write("NDMI: Normalized Difference Moisture Index, Mainly used to monitor the moisture content in vegetation")
|
308 |
-
|
309 |
else:
|
310 |
st.info("No Fields Added Yet!")
|
311 |
return
|
312 |
-
|
313 |
if field_name != "Select Field":
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
#
|
357 |
-
|
358 |
-
#
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
388 |
st.area_chart(prediction_chart_data, x="date", y=[f"history_{metric}_values", f"predicted_{metric}_values"])
|
389 |
-
|
390 |
st.subheader('Recommendation:')
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
|
396 |
-
|
397 |
-
|
398 |
-
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
421 |
|
422 |
|
423 |
if __name__ == '__main__':
|
|
|
32 |
|
33 |
|
34 |
config = SHConfig()
|
35 |
+
config.instance_id = '44e79764-8b9d-43b0-a4bf-15799db2899d'
|
36 |
+
config.sh_client_id = '4ae34b53-3f81-4ba0-9c7d-b6fb0606dac3'
|
37 |
+
config.sh_client_secret = '3IPSSqE75fqK38vP85hxttR9PJEs5OxX'
|
38 |
config.sh_timesfm_IP = "34.121.141.161"
|
39 |
+
try:
|
40 |
+
OpenAI_key = os.getenv('OPENAI_KEY')
|
41 |
+
client = OpenAI(api_key= OpenAI_key)
|
42 |
+
except:
|
43 |
+
OpenAI_key = "sk-"
|
44 |
+
client = OpenAI(api_key= OpenAI_key)
|
45 |
|
46 |
def select_field(gdf):
|
47 |
st.markdown("""
|
|
|
141 |
|
142 |
|
143 |
def track(metric, field_name, src_df, client_name):
|
144 |
+
st.subheader(":green[Select Date and Start Monitoring]")
|
145 |
dates = []
|
146 |
date = -1
|
147 |
if 'dates' not in st.session_state:
|
|
|
174 |
.stSelectbox > div > div {cursor: pointer;}
|
175 |
</style>
|
176 |
""", unsafe_allow_html=True)
|
177 |
+
dates.append(-1)
|
178 |
date = st.selectbox('Select Observation Date: ', dates, index=len(dates)-1, key=f'Select Date Dropdown Menu - {metric}')
|
179 |
if date != -1:
|
180 |
+
st.write(f'You selected: {date}')
|
181 |
#Add the date to the session state
|
182 |
st.session_state['date'] = date
|
183 |
else:
|
|
|
187 |
|
188 |
|
189 |
st.markdown('---')
|
190 |
+
st.subheader('Show Field Data')
|
191 |
|
192 |
# If a field and a date are selected, display the field data
|
193 |
if date != -1:
|
|
|
237 |
)
|
238 |
|
239 |
# Add the base map
|
240 |
+
with st.expander("Show Map", expanded=False):
|
241 |
+
token = open("token.mapbox_token").read()
|
242 |
+
fig.update_layout(mapbox_style="satellite", mapbox_accesstoken=token)
|
243 |
+
st.plotly_chart(fig, use_container_width=True)
|
244 |
|
245 |
#Dwonload Links
|
246 |
|
|
|
293 |
|
294 |
|
295 |
def monitor_fields():
|
296 |
+
st.title(":orange[Field Monitoring]")
|
297 |
row1,row2 = st.columns([1,2])
|
298 |
with row1:
|
|
|
|
|
299 |
current_user = greeting("Let's take a look how these fields are doing")
|
300 |
if os.path.exists(f"fields_{current_user}.parquet"):
|
301 |
gdf = gpd.read_parquet(f"fields_{current_user}.parquet")
|
|
|
304 |
st.info("No Field Selected Yet!")
|
305 |
else:
|
306 |
metric = st.radio("Select Metric to Monitor", ["NDVI", "LAI", "CAB"], key="metric", index=0, help="Select the metric to monitor")
|
307 |
+
st.write(f"Monitoring {metric} for {field_name}")
|
308 |
with st.expander("Metrics Explanation", expanded=False):
|
309 |
st.write("NDVI: Normalized Difference Vegetation Index, Mainly used to monitor the health of vegetation")
|
310 |
st.write("LAI: Leaf Area Index, Mainly used to monitor the productivity of vegetation")
|
311 |
st.write("CAB: Chlorophyll Absorption in the Blue band, Mainly used to monitor the chlorophyll content in vegetation")
|
312 |
# st.write("NDMI: Normalized Difference Moisture Index, Mainly used to monitor the moisture content in vegetation")
|
313 |
+
|
314 |
else:
|
315 |
st.info("No Fields Added Yet!")
|
316 |
return
|
317 |
+
with row2:
|
318 |
if field_name != "Select Field":
|
319 |
+
track(metric, field_name, gdf, current_user)
|
320 |
+
|
321 |
+
if field_name != "Select Field":
|
322 |
+
st.title(":orange[Field Health Forecast]")
|
323 |
+
st.write(f"Press the button below to predict {metric} for the next 30 weeks")
|
324 |
+
if 'api_token_confirmed' not in st.session_state:
|
325 |
+
st.session_state['api_token'] = ''
|
326 |
+
st.session_state['api_token_confirmed'] = False
|
327 |
+
if not st.session_state['api_token_confirmed']:
|
328 |
+
with st.empty():
|
329 |
+
st.warning("No Valid API Token Found")
|
330 |
+
st.info("You can get the API Token from the Service Page on the SNET Platform (link to the service page)")
|
331 |
+
st.info("For Testing purposes, you can use: TEST_TOKEN")
|
332 |
+
api_token = st.text_input("API Token", key="api_token_input", help="Enter the API Token From SNET")
|
333 |
+
if st.button("submit API Token", key="confirm_api_token"):
|
334 |
+
if utils.confirm_api_token(api_token):
|
335 |
+
st.session_state['api_token'] = api_token
|
336 |
+
st.session_state['api_token_confirmed'] = True
|
337 |
+
st.session_state['valid_until'] = utils.load_token_expiration(api_token).strftime('%Y-%m-%d %H:%M:%S')
|
338 |
+
st.rerun()
|
339 |
+
else:
|
340 |
+
st.error("Invalid API Token")
|
341 |
+
else:
|
342 |
+
st.success(f"API Token Confirmed valid until {st.session_state['valid_until']}")
|
343 |
+
lookback_days = st.slider("Select Lookback Days", 30, 365, 60, step=30,key="lookback_days", help="Large lookback days may take longer to load")
|
344 |
+
subcol1, subcol2, subcol3 = st.columns(3)
|
345 |
+
|
346 |
+
if subcol2.button(f'Predict & Recommend', key="predict_button", disabled=not st.session_state['api_token_confirmed']):
|
347 |
+
# start_date = '2024-01-01'
|
348 |
+
today = datetime.today()
|
349 |
+
end_date = today.strftime('%Y-%m-%d')
|
350 |
+
start_date = today - timedelta(days=lookback_days)
|
351 |
+
start_date = start_date.strftime('%Y-%m-%d')
|
352 |
+
year = '2024'
|
353 |
+
|
354 |
+
dates = get_and_cache_available_dates(gdf, field_name, year, start_date, end_date)
|
355 |
+
newest_date, oldest_date = dates[0], dates[-1]
|
356 |
+
number_of_months = (datetime.strptime(newest_date, '%Y-%m-%d') - datetime.strptime(oldest_date, '%Y-%m-%d')).days//30
|
357 |
+
my_bar = st.progress(0, text= f"Downloading Data for the last {number_of_months+1} months ...")
|
358 |
+
counter = 0
|
359 |
+
downloaded_prev_metrics = []
|
360 |
+
for index, date in enumerate(dates):
|
361 |
+
# time.sleep(0.1)
|
362 |
+
metric_data = get_cuarted_df_for_field(gdf, field_name, date, metric, current_user, dates = None)
|
363 |
+
# cloud_cover_data = get_cuarted_df_for_field(gdf, field_name, date, 'CLP', current_user, dates = None)
|
364 |
+
# field_data = metric_data.merge(cloud_cover_data, on='geometry')
|
365 |
+
avg_metric = metric_data[f'{metric}_{date}'].mean()
|
366 |
+
downloaded_prev_metrics.append((date, avg_metric))
|
367 |
+
counter = counter + 100/(len(dates))
|
368 |
+
my_bar.progress(round(counter), text=f"Downloading Data for the last {len(dates)//6} months: {round(counter)}%")
|
369 |
+
|
370 |
+
st.subheader('Predictions:')
|
371 |
+
# chart_data = pd.DataFrame(
|
372 |
+
# {
|
373 |
+
# "date": [metric[0] for metric in downloaded_prev_metrics],
|
374 |
+
# f"{metric}": [metric[1] for metric in downloaded_prev_metrics],
|
375 |
+
# }
|
376 |
+
# )
|
377 |
+
|
378 |
+
# st.area_chart(chart_data, x="date", y=f"{metric}")
|
379 |
+
channel = grpc.insecure_channel(f"{config.sh_timesfm_IP}:50051")
|
380 |
+
print("runing client request")
|
381 |
+
stub = pb.timesfm_pb2_grpc.PredictAgriStub(channel)
|
382 |
+
features = stub.predict_metric(iter([pb.timesfm_pb2.prev_values(value=metric[1], date=metric[0]) for metric in downloaded_prev_metrics]))
|
383 |
+
print("server streaming:")
|
384 |
+
predictions = []
|
385 |
+
for feature in features:
|
386 |
+
predictions.append(feature.value)
|
387 |
+
# do something with the returned output
|
388 |
+
# print(predictions)
|
389 |
+
future_dates = []
|
390 |
+
# print(dates[0])
|
391 |
+
curr_date = datetime.today()
|
392 |
+
for pred in predictions:
|
393 |
+
curr_date = curr_date + timedelta(days=7)
|
394 |
+
future_dates.append(curr_date.strftime('%Y-%m-%d'))
|
395 |
+
|
396 |
+
prev_dates = [metric[0] for metric in downloaded_prev_metrics]
|
397 |
+
history_metric_data = [metric[1] for metric in downloaded_prev_metrics]
|
398 |
+
future_metric_data = predictions
|
399 |
+
interval_dates = prev_dates
|
400 |
+
interval_dates.extend(future_dates)
|
401 |
+
history_metric_data.extend([0 for i in range(len(predictions))])
|
402 |
+
masked_future_metric_data = [0 for i in range(len([metric[1] for metric in downloaded_prev_metrics]))]
|
403 |
+
masked_future_metric_data.extend(future_metric_data)
|
404 |
+
# print(f"interval_dates:{len(interval_dates)}")
|
405 |
+
# print(f"history_metric_data:{len(history_metric_data)}")
|
406 |
+
# print(f"masked_future_metric_data:{len(masked_future_metric_data)}")
|
407 |
+
# print(predictions)
|
408 |
+
|
409 |
+
# print(interval_dates)
|
410 |
+
prediction_chart_data = pd.DataFrame(
|
411 |
+
{
|
412 |
+
f"history_{metric}_values": history_metric_data,
|
413 |
+
f"predicted_{metric}_values":masked_future_metric_data,
|
414 |
+
f"date": interval_dates,
|
415 |
+
}
|
416 |
+
)
|
417 |
+
|
418 |
+
# print(prediction_chart_data)
|
419 |
+
graph_col, recommendation_col = st.columns([1,1])
|
420 |
+
with graph_col:
|
421 |
st.area_chart(prediction_chart_data, x="date", y=[f"history_{metric}_values", f"predicted_{metric}_values"])
|
422 |
+
with recommendation_col:
|
423 |
st.subheader('Recommendation:')
|
424 |
+
with st.spinner("Generating Recommendation..."):
|
425 |
+
crop = gdf.loc[gdf['name'] == field_name].crop if 'crop' in gdf.columns else "Wheat"
|
426 |
+
|
427 |
+
|
428 |
+
try:
|
429 |
+
weeks = future_dates
|
430 |
+
gdf_loc = gdf.loc[gdf['name'] == field_name].reset_index(drop=True)
|
431 |
+
location = utils.get_region_from_coordinates(gdf_loc.geometry[0].centroid.y, gdf_loc.geometry[0].centroid.x)
|
432 |
+
prompt = f"""The Field Name is {field_name} and is located in {location}.
|
433 |
+
Analyze {crop} growth conditions for the next {len(weeks)} weeks starting from {weeks[0]} to {weeks[-1]} based on the Forecatsed {metric} values weekly.
|
434 |
+
{metric}: {predictions}
|
435 |
+
|
436 |
+
Provide a concise Short report:
|
437 |
+
|
438 |
+
1. Field Status (use format "Category: Status - One sentence comment", (e.g. Overall Health: Low - The NDVI values consistently below 0.2, indicating weak vegetative growth.)
|
439 |
+
- Overall Health:
|
440 |
+
- Growth Stage:
|
441 |
+
- Pest Risk:
|
442 |
+
- Disease Risk:
|
443 |
+
- Stress Level:
|
444 |
+
|
445 |
+
2. Yield Forecast:
|
446 |
+
[look online for the expected yield for the crop in the region based {metric} values]
|
447 |
+
|
448 |
+
3. Recommendation:
|
449 |
+
[one actionable advice reasoned based on the forecasted {metric} values, season, crop, and region]
|
450 |
+
|
451 |
+
"""
|
452 |
+
# prompt = f"given the {metric} values weekly for the next 30 weeks, comment if they are appropriate to grow {crop} (write one paragraph showing your conclusion): {metric} values:{predictions}"
|
453 |
+
response = client.chat.completions.create(
|
454 |
+
model="gpt-4o",
|
455 |
+
messages=[
|
456 |
+
{
|
457 |
+
"role": "user",
|
458 |
+
"content": prompt
|
459 |
+
}
|
460 |
+
],
|
461 |
+
temperature=1,
|
462 |
+
max_tokens=256,
|
463 |
+
top_p=1,
|
464 |
+
frequency_penalty=0,
|
465 |
+
presence_penalty=0
|
466 |
+
)
|
467 |
+
st.markdown(response.choices[0].message.content)
|
468 |
+
except Exception as e:
|
469 |
+
st.code("Server Error: Could't generate recommendation!")
|
470 |
+
st.error(e)
|
471 |
+
|
472 |
+
|
473 |
+
|
474 |
|
475 |
|
476 |
if __name__ == '__main__':
|
process.py
CHANGED
@@ -6,9 +6,9 @@ from sentinelhub import SHConfig, MimeType
|
|
6 |
|
7 |
|
8 |
config = SHConfig()
|
9 |
-
config.instance_id = '
|
10 |
-
config.sh_client_id = '
|
11 |
-
config.sh_client_secret = '
|
12 |
config.sh_timesfm_IP = "34.121.141.161"
|
13 |
|
14 |
def Download_image_in_given_date(clientName, metric, df, field, date, mime_type = MimeType.TIFF):
|
|
|
6 |
|
7 |
|
8 |
config = SHConfig()
|
9 |
+
config.instance_id = '44e79764-8b9d-43b0-a4bf-15799db2899d'
|
10 |
+
config.sh_client_id = '4ae34b53-3f81-4ba0-9c7d-b6fb0606dac3'
|
11 |
+
config.sh_client_secret = '3IPSSqE75fqK38vP85hxttR9PJEs5OxX'
|
12 |
config.sh_timesfm_IP = "34.121.141.161"
|
13 |
|
14 |
def Download_image_in_given_date(clientName, metric, df, field, date, mime_type = MimeType.TIFF):
|
tokens.txt
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
k20rjxb2muforgz4eoh5b3rw8oaizsia
|
2 |
+
pbmhjy7e8943e65i6cfwk8sixfwnj7ky
|
3 |
+
zx57n4wyv34gd0unfs4y0kpjkfdgshx7
|
4 |
+
ox5680uleqj9ea0jhqcl35a20qhlr3zm
|
5 |
+
9mfg7acflhkbif70bnrn2lq3ult5t7l5
|
6 |
+
gof83vvcxu6lrwqmfjnp3v0048rpbzid
|
7 |
+
klhbf2c2o7l0g7d9z13kkp2z4q2r9v6i
|
8 |
+
oijpgewezt9d39886829szmmryfr2k9y
|
9 |
+
c4selw18hwft2mloqe9uv1ddozspmjbo
|
10 |
+
kfpo6khkcuirmkshjufdob6k1dn9a2oo
|
11 |
+
TEST_TOKEN
|
tokens_expired.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
9mfg7acflhkbif70bnrn2lq3ult5t7l5,2024-07-26T20:38:48.882401
|
2 |
+
3swbgq8p1x6wo4kt8vn9apus3y1trlii,2024-07-26T20:08:55.102588
|
3 |
+
9mfg7acflhkbif70bnrn2lq3ult5t7l5,2024-07-26T20:09:19.569408
|
4 |
+
9mfg7acflhkbif70bnrn2lq3ult5t7l5,2024-07-26T19:39:42.164519
|
5 |
+
kfpo6khkcuirmkshjufdob6k1dn9a2oo,2025-07-26T20:45:07.000759
|
6 |
+
TEST_TOKEN,2025-07-26T20:45:07.000759
|
utils.py
CHANGED
@@ -7,6 +7,101 @@ import geopandas as gpd
|
|
7 |
from shapely.geometry import Point
|
8 |
from PIL import Image
|
9 |
from tqdm import tqdm
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
# Initialzie custom basemaps for folium
|
12 |
basemaps = {
|
|
|
7 |
from shapely.geometry import Point
|
8 |
from PIL import Image
|
9 |
from tqdm import tqdm
|
10 |
+
import geopy
|
11 |
+
from geopy.geocoders import Nominatim
|
12 |
+
from geopy.exc import GeocoderTimedOut, GeocoderUnavailable
|
13 |
+
|
14 |
+
import random
|
15 |
+
import string
|
16 |
+
import os
|
17 |
+
from datetime import datetime, timedelta
|
18 |
+
|
19 |
+
TOKEN_FILE = "tokens.txt"
|
20 |
+
EXPIRED_FILE = "tokens_expired.txt"
|
21 |
+
|
22 |
+
def generate_random_unique_tokens(num_tokens=10, token_file=TOKEN_FILE):
|
23 |
+
'''Generates a list of random unique tokens and saves them to a file.'''
|
24 |
+
if not os.path.exists(token_file):
|
25 |
+
with open(token_file, 'w') as f:
|
26 |
+
tokens = set()
|
27 |
+
while len(tokens) < num_tokens:
|
28 |
+
token = ''.join(random.choices(string.ascii_lowercase + string.digits, k=32))
|
29 |
+
tokens.add(token)
|
30 |
+
for token in tokens:
|
31 |
+
f.write(token + '\n')
|
32 |
+
else:
|
33 |
+
with open(token_file, 'r') as f:
|
34 |
+
tokens = set(f.read().splitlines())
|
35 |
+
with open(token_file, 'a') as f:
|
36 |
+
while len(tokens) < num_tokens:
|
37 |
+
token = ''.join(random.choices(string.ascii_lowercase + string.digits, k=32))
|
38 |
+
if token not in tokens:
|
39 |
+
tokens.add(token)
|
40 |
+
f.write(token + '\n')
|
41 |
+
return tokens
|
42 |
+
|
43 |
+
def confirm_api_token(token, token_file=TOKEN_FILE, expired_file=EXPIRED_FILE):
|
44 |
+
'''Checks if the given token is valid and not expired.'''
|
45 |
+
with open(token_file, 'r') as f:
|
46 |
+
tokens = set(f.read().splitlines())
|
47 |
+
if token in tokens:
|
48 |
+
now = datetime.now()
|
49 |
+
if token in load_expired_tokens(expired_file):
|
50 |
+
if now < load_token_expiration(token, expired_file):
|
51 |
+
return True
|
52 |
+
else:
|
53 |
+
expiry_date = now + timedelta(hours=1)
|
54 |
+
save_expired_token(token, expiry_date, expired_file)
|
55 |
+
return True
|
56 |
+
return False
|
57 |
+
|
58 |
+
def load_expired_tokens(expired_file=EXPIRED_FILE):
|
59 |
+
'''Loads expired tokens from the file.'''
|
60 |
+
expired_tokens = {}
|
61 |
+
if os.path.exists(expired_file):
|
62 |
+
with open(expired_file, 'r') as f:
|
63 |
+
for line in f:
|
64 |
+
token, expiry_date = line.strip().split(',')
|
65 |
+
expired_tokens[token] = datetime.fromisoformat(expiry_date)
|
66 |
+
return expired_tokens
|
67 |
+
|
68 |
+
def load_token_expiration(token, expired_file=EXPIRED_FILE):
|
69 |
+
'''Loads the expiration date for a given token.'''
|
70 |
+
expired_tokens = load_expired_tokens(expired_file)
|
71 |
+
return expired_tokens.get(token)
|
72 |
+
|
73 |
+
def save_expired_token(token, expiry_date, expired_file=EXPIRED_FILE):
|
74 |
+
'''Saves expired tokens to the file.'''
|
75 |
+
if not os.path.exists(expired_file):
|
76 |
+
with open(expired_file, 'w') as f:
|
77 |
+
f.write(f"{token},{expiry_date.isoformat()}\n")
|
78 |
+
else:
|
79 |
+
with open(expired_file, 'a') as f:
|
80 |
+
f.write(f"{token},{expiry_date.isoformat()}\n")
|
81 |
+
|
82 |
+
|
83 |
+
def get_region_from_coordinates(latitude, longitude, max_retries=3):
|
84 |
+
geolocator = Nominatim(user_agent="my_agent")
|
85 |
+
|
86 |
+
for attempt in range(max_retries):
|
87 |
+
try:
|
88 |
+
location = geolocator.reverse(f"{latitude}, {longitude}")
|
89 |
+
if location and location.raw.get('address'):
|
90 |
+
address = location.raw['address']
|
91 |
+
# Try to get the most relevant administrative level
|
92 |
+
for level in ['state', 'county', 'region', 'province', 'district']:
|
93 |
+
if level in address:
|
94 |
+
return address[level]
|
95 |
+
# If no specific region is found, return the country
|
96 |
+
if 'country' in address:
|
97 |
+
return address['country']
|
98 |
+
return "Region not found"
|
99 |
+
except (GeocoderTimedOut, GeocoderUnavailable):
|
100 |
+
if attempt == max_retries - 1:
|
101 |
+
return "Geocoding service unavailable"
|
102 |
+
|
103 |
+
return "Failed to retrieve region information"
|
104 |
+
|
105 |
|
106 |
# Initialzie custom basemaps for folium
|
107 |
basemaps = {
|