Spaces:
Sleeping
Sleeping
# -*- coding: utf-8 -*- | |
# @Time : 2022/03/23 16:55 | |
# @Author : Jianing Wang | |
# @Email : [email protected] | |
# @File : SimilarityLoss.py | |
# !/usr/bin/env python | |
# coding=utf-8 | |
import torch | |
from torch import nn, Tensor | |
from transformers.models.bert.modeling_bert import BertModel | |
from transformers import BertTokenizer, BertConfig | |
class CosineSimilarityLoss(nn.Module): | |
""" | |
CosineSimilarityLoss expects, that the InputExamples consists of two texts and a float label. | |
It computes the vectors u = model(input_text[0]) and v = model(input_text[1]) and measures the cosine-similarity between the two. | |
By default, it minimizes the following loss: ||input_label - cos_score_transformation(cosine_sim(u,v))||_2. | |
:param loss_fct: Which pytorch loss function should be used to compare the cosine_similartiy(u,v) with the input_label? By default, MSE: ||input_label - cosine_sim(u,v)||_2 | |
:param cos_score_transformation: The cos_score_transformation function is applied on top of cosine_similarity. By default, the identify function is used (i.e. no change). | |
""" | |
def __init__(self, loss_fct = nn.MSELoss(), cos_score_transformation=nn.Identity()): | |
super(CosineSimilarityLoss, self).__init__() | |
self.loss_fct = loss_fct | |
self.cos_score_transformation = cos_score_transformation | |
def forward(self, rep_a, rep_b, label: Tensor): | |
# rep_a: [batch_size, hidden_dim] | |
# rep_b: [batch_size, hidden_dim] | |
output = self.cos_score_transformation(torch.cosine_similarity(rep_a, rep_b)) | |
# print(output) # tensor([0.9925, 0.5846], grad_fn=<DivBackward0>), tensor(0.1709, grad_fn=<MseLossBackward0>) | |
return self.loss_fct(output, label.view(-1)) | |
if __name__ == "__main__": | |
# configure for huggingface pre-trained language models | |
config = BertConfig.from_pretrained("bert-base-cased") | |
# tokenizer for huggingface pre-trained language models | |
tokenizer = BertTokenizer.from_pretrained("bert-base-cased") | |
# pytorch_model.bin for huggingface pre-trained language models | |
model = BertModel.from_pretrained("bert-base-cased") | |
# obtain two batch of examples, each corresponding example is a pair | |
examples1 = ["Beijing is one of the biggest city in China.", "Disney film is well seeing for us."] | |
examples2 = ["Shanghai is the largest city in east of China.", "ACL 2021 will be held in line due to COVID-19."] | |
label = [1, 0] | |
# convert each example for feature | |
# {"input_ids": xxx, "attention_mask": xxx, "token_tuype_ids": xxx} | |
features1 = tokenizer(examples1, add_special_tokens=True, padding=True) | |
features2 = tokenizer(examples2, add_special_tokens=True, padding=True) | |
# padding and convert to feature batch | |
max_seq_lem = 24 | |
features1 = {key: torch.Tensor([value + [0] * (max_seq_lem - len(value)) for value in values]).long() for key, values in features1.items()} | |
features2 = {key: torch.Tensor([value + [0] * (max_seq_lem - len(value)) for value in values]).long() for key, values in features2.items()} | |
label = torch.Tensor(label).long() | |
# obtain sentence embedding by averaged pooling | |
rep_a = model(**features1)[0] # [batch_size, max_seq_len, hidden_dim] | |
rep_b = model(**features2)[0] # [batch_size, max_seq_len, hidden_dim] | |
rep_a = torch.mean(rep_a, -1) # [batch_size, hidden_dim] | |
rep_b = torch.mean(rep_b, -1) # [batch_size, hidden_dim] | |
# obtain contrastive loss | |
loss_fn = CosineSimilarityLoss() | |
loss = loss_fn(rep_a=rep_a, rep_b=rep_b, label=label) | |
print(loss) # tensor(0.1709, grad_fn=<SumBackward0>) | |