DeepLearning101 commited on
Commit
45311fe
·
1 Parent(s): 2fcdf98

Upload 21 files

Browse files
tools/__init__.py ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ # @Time : 2021/12/2 5:41 p.m.
3
+ # @Author : JianingWang
4
+ # @File : __init__.py
tools/analysis_toolkits/__init__.py ADDED
File without changes
tools/computations/softmax.py ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+
3
+ """
4
+ Transform the torch logits into probabilities.
5
+ """
6
+ def softmax(logits):
7
+ probs = torch.softmax(torch.from_numpy(logits).float(), -1).numpy()
8
+ return probs
tools/data_structures/__init__.py ADDED
File without changes
tools/data_structures/trie.py ADDED
@@ -0,0 +1,152 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ # @Time : 2022/2/15 7:57 下午
3
+ # @Author : JianingWang
4
+ # @File : trie
5
+ import logging
6
+ from typing import List
7
+ from collections import OrderedDict
8
+
9
+ logger = logging.getLogger(__name__)
10
+
11
+
12
+ class Trie:
13
+ def __init__(self):
14
+ self.data = {}
15
+
16
+ def add(self, word: str):
17
+ """
18
+ Passes over every char (utf-8 char) on word and recursively adds it to the internal `data` trie representation.
19
+ The special key `""` is used to represent termination.
20
+
21
+ This function is idempotent, adding twice the same word will leave the trie unchanged
22
+
23
+ Example:
24
+
25
+ ```python
26
+ >>> trie = Trie()
27
+ >>> trie.add("Hello 友達")
28
+ >>> trie.data
29
+ {"H": {"e": {"l": {"l": {"o": {" ": {"友": {"達": {"": 1}}}}}}}}}
30
+
31
+ >>> trie.add("Hello")
32
+ >>> trie.data
33
+ {"H": {"e": {"l": {"l": {"o": {"": 1, " ": {"友": {"達": {"": 1}}}}}}}}}
34
+ ```
35
+ """
36
+ if not word:
37
+ # Prevent empty string
38
+ return
39
+ ref = self.data
40
+ for char in word:
41
+ ref[char] = char in ref and ref[char] or {}
42
+ ref = ref[char]
43
+ ref[""] = 1
44
+
45
+ def find(self, text: str):
46
+ states = OrderedDict()
47
+ offsets = []
48
+ skip = 0
49
+ for current, current_char in enumerate(text):
50
+ if skip and current < skip:
51
+ continue
52
+ to_remove = set()
53
+ reset = False
54
+ for start, trie_pointer in states.items():
55
+ if "" in trie_pointer:
56
+ for lookstart, looktrie_pointer in states.items():
57
+ if lookstart > start:
58
+ break
59
+ elif lookstart < start:
60
+ lookahead_index = current + 1
61
+ end = current + 1
62
+ else:
63
+ lookahead_index = current
64
+ end = current
65
+ next_char = text[lookahead_index] if lookahead_index < len(text) else None
66
+ if "" in looktrie_pointer:
67
+ start = lookstart
68
+ end = lookahead_index
69
+ skip = lookahead_index
70
+
71
+ while next_char in looktrie_pointer:
72
+ looktrie_pointer = looktrie_pointer[next_char]
73
+ lookahead_index += 1
74
+ if "" in looktrie_pointer:
75
+ start = lookstart
76
+ end = lookahead_index
77
+ skip = lookahead_index
78
+
79
+ if lookahead_index == len(text):
80
+ break
81
+ next_char = text[lookahead_index]
82
+ offsets.append([start, end])
83
+ reset = True
84
+ break
85
+ elif current_char in trie_pointer:
86
+ trie_pointer = trie_pointer[current_char]
87
+ states[start] = trie_pointer
88
+ else:
89
+ to_remove.add(start)
90
+ if reset:
91
+ states = {}
92
+ else:
93
+ for start in to_remove:
94
+ del states[start]
95
+ if current >= skip and current_char in self.data:
96
+ states[current] = self.data[current_char]
97
+ for start, trie_pointer in states.items():
98
+ if "" in trie_pointer:
99
+ end = len(text)
100
+ offsets.append([start, end])
101
+ break
102
+
103
+ return offsets
104
+
105
+ def split(self, text: str) -> List[str]:
106
+ """
107
+ Example:
108
+
109
+ ```python
110
+ >>> trie = Trie()
111
+ >>> trie.split("[CLS] This is a extra_id_100")
112
+ ["[CLS] This is a extra_id_100"]
113
+
114
+ >>> trie.add("[CLS]")
115
+ >>> trie.add("extra_id_1")
116
+ >>> trie.add("extra_id_100")
117
+ >>> trie.split("[CLS] This is a extra_id_100")
118
+ ["[CLS]", " This is a ", "extra_id_100"]
119
+ ```
120
+ """
121
+ word_sets = self.find(text)
122
+ offsets = [0]
123
+ for w in word_sets:
124
+ offsets.extend(w)
125
+ return self.cut_text(text, offsets)
126
+
127
+ def cut_text(self, text, offsets):
128
+ offsets.append(len(text))
129
+ tokens = []
130
+ start = 0
131
+ for end in offsets:
132
+ if start > end:
133
+ logger.error(
134
+ "There was a bug in Trie algorithm in tokenization. Attempting to recover. Please report it anyway."
135
+ )
136
+ continue
137
+ elif start == end:
138
+ continue
139
+ tokens.append(text[start:end])
140
+ start = end
141
+
142
+ return tokens
143
+
144
+ def __reduce__(self):
145
+ return None
146
+
147
+
148
+ if __name__ == "__main__":
149
+ trie = Trie()
150
+ for word in ["A", "AB", "BD", "BWA"]:
151
+ trie.add(word)
152
+ print(trie.__reduce__())
tools/model_utils/__init__.py ADDED
File without changes
tools/model_utils/calibrate.py ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ # @Time    : 2023/3/20 8:02 p.m.
3
+ # @Author  : Jianing Wang
4
+ # @File    : calibrate.py
5
+
6
+ import os
7
+ import numpy as np
8
+ import torch
9
+
10
+ """
11
+ Use LM to classify label words for calibrating CLS
12
+ """
13
+ class CLSCalibrator:
14
+ pass
15
+
16
+ """
17
+ Use Causal LM to generate label words for calibrating CLS
18
+ e.g., use gpt2 to generate a label word with in-context prompts, and calibrate for the prediction.
19
+ Paper: http://proceedings.mlr.press/v139/zhao21c.html
20
+ """
21
+ class CausalCLSCalibrator:
22
+
23
+ def __init__(self, model, tokenizer) -> None:
24
+ self.model = model
25
+ self.tokenizer = tokenizer
26
+
27
+ def calibrate(self, all_label_probs, content_free_examples, label2id, mode="diagonal_W"):
28
+ """Perform calibration for de-biasing and obtain calibrated probability"""
29
+ p_cf = self.get_content_free_prediction(content_free_examples, label2id)
30
+
31
+ num_classes = all_label_probs.shape[1]
32
+ if p_cf is None:
33
+ # do not calibrate
34
+ W = np.identity(num_classes)
35
+ b = np.zeros([num_classes, 1])
36
+ else:
37
+ # calibrate
38
+ if mode == "diagonal_W":
39
+ W = np.linalg.inv(np.identity(num_classes) * p_cf)
40
+ b = np.zeros([num_classes, 1])
41
+ elif mode == "identity_W":
42
+ W = np.identity(num_classes)
43
+ b = -1 * np.expand_dims(p_cf, axis=-1)
44
+ else:
45
+ assert False
46
+
47
+
48
+ all_calibrate_label_probs = list()
49
+ for label_probs in all_label_probs:
50
+ label_probs = label_probs / np.sum(label_probs) # normalize to 1
51
+ calibrate_label_probs = np.matmul(W, np.expand_dims(label_probs, axis=-1)) + b
52
+ all_calibrate_label_probs.append(calibrate_label_probs.squeeze().tolist())
53
+ return np.array(all_calibrate_label_probs)
54
+
55
+
56
+ def get_content_free_prediction(self, content_free_examples, label2id: dict):
57
+ """Query model with content free input, return its prediction probability for each label"""
58
+
59
+ all_p_y = []
60
+ for content_free_example in content_free_examples:
61
+
62
+ content_free_prompt = content_free_example["content_free_prompt"]
63
+ p_y = [0] * len(label2id)
64
+ for answers, i in label2id.items():
65
+ prob = 0
66
+ for a in answers:
67
+ prob += np.exp(self.get_causal_cls_prediction(content_free_prompt + " " + a, 0, echo=True, num_log_probs=1)['choices'][0]['logprobs']['token_logprobs'][-1])
68
+ p_y[i] = prob
69
+ all_p_y.append(p_y)
70
+
71
+ p_y = np.mean(np.array(all_p_y), axis=0)
72
+ p_y = p_y / np.sum(p_y) # normalize
73
+ return p_y
74
+
75
+
76
+ def get_causal_cls_prediction(self, prompt, l=10, num_log_probs=None, echo=False):
77
+ ''' This function runs GPT-2 locally but places the outputs into an json that looks just like the one
78
+ provided by the OpenAI API. '''
79
+ if isinstance(prompt, str):
80
+ prompt = [prompt] # the code below assumes a list
81
+ input_ids = self.tokenizer.batch_encode_plus(prompt, return_tensors="pt", padding=True)
82
+
83
+ if l + len(input_ids['input_ids'][0]) > 1020:
84
+ m = l + len(input_ids['input_ids'][0]) - 1024
85
+ input_ids['input_ids'] = torch.Tensor([input_ids['input_ids'][0][m:].numpy()]).long()
86
+ input_ids['attention_mask'] = torch.Tensor([input_ids['attention_mask'][0][m:].numpy()]).long()
87
+
88
+ # greedily generate l tokens
89
+ # print("l=", l)
90
+ if l > 0:
91
+ # the generate function can handle left padded inputs automatically in HF
92
+ # total_sequences is now the input + possible generated output
93
+ # print("l + len(input_ids[input_ids][0]=", l + len(input_ids['input_ids'][0]))
94
+ total_sequences = self.model.generate(
95
+ input_ids=input_ids['input_ids'].to(self.model.device),
96
+ attention_mask=input_ids['attention_mask'].to(self.model.device),
97
+ max_length=l + len(input_ids['input_ids'][0]),
98
+ do_sample=False
99
+ )
100
+ else:
101
+ assert echo == True and l == 0
102
+ total_sequences = input_ids['input_ids'].to(self.model.device)
103
+ # print("="*50)
104
+ # print("total_sequences=", total_sequences) [batch, len+l]
105
+ # print("total_sequences.shape=", total_sequences.shape)
106
+
107
+ # they want the probs of the top tokens
108
+ if num_log_probs is not None:
109
+ # we are left padding, so we need to adjust the position IDs
110
+ attention_mask = (total_sequences != 50256).float()
111
+ position_ids = attention_mask.long().cumsum(-1) - 1
112
+ position_ids.masked_fill_(attention_mask == 0, 1)
113
+ # get the logits for the context and the next l tokens
114
+ logits = self.model.forward(input_ids=total_sequences, attention_mask=attention_mask, position_ids=position_ids, return_dict=True).logits.detach().cpu()
115
+ if not echo:
116
+ # get the top tokens and probs for the generated l tokens
117
+ probs = torch.softmax(logits[:,-l-1:], dim=2).cpu()
118
+ else:
119
+ # get the top tokens and probs for the context and the generated l tokens
120
+ probs = torch.softmax(logits, dim=2).cpu()
121
+ top_probs, top_tokens = torch.topk(probs, k=num_log_probs)
122
+ logprobs = torch.log(probs)
123
+ top_log_probs = torch.log(top_probs)
124
+ # print("top_log_probs=", top_log_probs)
125
+ # print("top_log_probs.shape=", top_log_probs.shape) # [1, 2, 100] [batch, 2, api_num_log_prob]
126
+
127
+ # create the return value to resemble OpenAI
128
+ return_json = {}
129
+ choices = []
130
+ # print("="*50)
131
+ for batch_id in range(len(prompt)):
132
+ curr_json = {}
133
+ # text is just the optional context and next l tokens
134
+ if not echo:
135
+ curr_json['text'] = self.tokenizer.decode(total_sequences[batch_id][-l:], skip_special_tokens=True)
136
+ else:
137
+ curr_json['text'] = self.tokenizer.decode(total_sequences[batch_id], skip_special_tokens=True)
138
+
139
+ # fill the return json with the top tokens and probs to match the OpenAI return value.
140
+ if num_log_probs is not None:
141
+ curr_json['logprobs'] = {}
142
+ curr_json['logprobs']['top_logprobs'] = []
143
+ curr_json['logprobs']['token_logprobs'] = []
144
+ curr_json['logprobs']['tokens'] = []
145
+ if not echo:
146
+ # cutoff the -1 here because the probs are shifted one over for LMs
147
+ for current_element_top_log_probs, current_element_top_tokens in zip(top_log_probs[batch_id][:-1], top_tokens[batch_id][:-1]):
148
+ # tokens is a list of the top token at each position
149
+ curr_json['logprobs']['tokens'].append(self.tokenizer.decode([current_element_top_tokens[0]]))
150
+ # token_logprobs is a list of the logprob of the top token at each position
151
+ curr_json['logprobs']['token_logprobs'].append(current_element_top_log_probs[0].item())
152
+ # top_logprobs is a list of dicts for the top K tokens. with each entry being {'token_name': log_prob}
153
+ temp = {}
154
+ for log_prob, token in zip(current_element_top_log_probs, current_element_top_tokens):
155
+ temp[self.tokenizer.decode(token.item())] = log_prob.item()
156
+ curr_json['logprobs']['top_logprobs'].append(temp)
157
+ else:
158
+ # same as not above but small tweaks
159
+ # we add null to the front because for the GPT models, they have null probability for the first token
160
+ # (for some reason they don't have an beginning of sentence token)
161
+ curr_json['logprobs']['top_logprobs'].append('null')
162
+ # cutoff the -1 here because the probs are shifted one over for LMs
163
+ for index, (current_element_top_log_probs, current_element_top_tokens) in enumerate(zip(top_log_probs[batch_id][:-1], top_tokens[batch_id][:-1])):
164
+ # skip padding tokens
165
+ if total_sequences[batch_id][index].item() == 50256:
166
+ continue
167
+ temp = {}
168
+ for log_prob, token in zip(current_element_top_log_probs, current_element_top_tokens):
169
+ temp[self.tokenizer.decode(token.item())] = log_prob.item()
170
+ curr_json['logprobs']['top_logprobs'].append(temp)
171
+ for index in range(len(probs[batch_id])):
172
+ curr_json['logprobs']['tokens'].append(self.tokenizer.decode([total_sequences[batch_id][index]]))
173
+ curr_json['logprobs']['token_logprobs'].append('null')
174
+ for index, log_probs_token_position_j in enumerate(logprobs[batch_id][:-1]):
175
+ # probs are left shifted for LMs
176
+ curr_json['logprobs']['token_logprobs'].append(log_probs_token_position_j[total_sequences[batch_id][index+1]])
177
+
178
+ choices.append(curr_json)
179
+ # print("curr_json=", curr_json)
180
+ '''
181
+ e.g.,
182
+ num_tokens_to_predict=1
183
+ curr_json= {
184
+ 'text': ' I', # 当前生成的top词
185
+ 'logprobs': {'top_logprobs': [{' I': -3.4267239570617676, '\n': -3.5073862075805664, ...], # top100词及其socre
186
+ 'token_logprobs': [-3.4267239570617676], # 当前top词的score
187
+ 'tokens': [' I']}
188
+ }
189
+ num_tokens_to_predict=2
190
+ curr_json= {
191
+ 'text': '\nThe', # 如果指定生成两个词,则为两个词
192
+ 'logprobs': {'top_logprobs': [ # 两个位置对应的预测的score
193
+ {'\n': -3.186706304550171, '\xa0': -3.222092390060425, ' We': -6.781067848205566, ...},
194
+ {'The': -2.5251243114471436, '"': -2.857935667037964, ...],
195
+ 'token_logprobs': [-3.186706304550171, -2.5251243114471436], # 生成的词的score
196
+ 'tokens': ['\n', 'The']}
197
+ }
198
+ '''
199
+ return_json['choices'] = choices
200
+ # print("="*50)
201
+ # print("return_json=", return_json)
202
+ return return_json
tools/model_utils/gpt_response.py ADDED
@@ -0,0 +1,138 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ # @Time    : 2023/3/23 1:02 p.m.
3
+ # @Author  : Jianing Wang
4
+ # @File    : gpt_response.py
5
+
6
+ import os
7
+ import sys
8
+ import torch
9
+ import openai
10
+ import time
11
+
12
+ """
13
+ Call for GPT-style LLM.
14
+ The output format is the same as OpenAI (e.g., GPT-3.5 text-davinci-003)
15
+ """
16
+ class GPTResponse:
17
+
18
+ def __init__(self, model_type: str, data_path: str) -> None:
19
+ assert model_type in ["gpt2", "gpt3"]
20
+ self.model_type = model_type
21
+ if self.model_type == "gpt3":
22
+
23
+ with open(os.path.join(data_path, 'openai_key.txt'), 'r') as f:
24
+ key = f.readline().strip()
25
+ openai.api_key = key
26
+
27
+ def call_for_gpt3_response(self, prompt, l, model_name, temp=0, num_log_probs=None, echo=False, n=None):
28
+ """
29
+ call GPT-3 API until result is provided and then return it
30
+ """
31
+ response = None
32
+ received = False
33
+ while not received:
34
+ try:
35
+ response = openai.Completion.create(engine=model_name, prompt=prompt, max_tokens=l, temperature=temp,
36
+ logprobs=num_log_probs, echo=echo, stop='\n', n=n)
37
+ received = True
38
+ except:
39
+ error = sys.exc_info()[0]
40
+ if error == openai.error.InvalidRequestError: # something is wrong: e.g. prompt too long
41
+ print(f"InvalidRequestError\nPrompt passed in:\n\n{prompt}\n\n")
42
+ assert False
43
+
44
+ print("API error:", error)
45
+ time.sleep(1)
46
+ return response
47
+
48
+ def call_for_gpt2_response(self, gpt2_tokenizer, logits, total_sequences, l=10, num_log_probs=None, echo=False, n=None):
49
+ """
50
+ Obtain the prediction logits from gpt2 in local, and convert it to the value that can match the response from OpenAI
51
+ """
52
+ if not echo:
53
+ # get the top tokens and probs for the generated l tokens
54
+ probs = torch.softmax(logits[:,-l-1:], dim=2).cpu()
55
+ else:
56
+ # get the top tokens and probs for the context and the generated l tokens
57
+ probs = torch.softmax(logits, dim=2).cpu()
58
+ # print("probs=", probs)
59
+ top_probs, top_tokens = torch.topk(probs, k=num_log_probs)
60
+ logprobs = torch.log(probs)
61
+ top_log_probs = torch.log(top_probs)
62
+
63
+ # create the return value to resemble OpenAI
64
+ return_json = {}
65
+ choices = []
66
+ # print("="*50)
67
+ for batch_id in range(len(logits)):
68
+ curr_json = {}
69
+ # text is just the optional context and next l tokens
70
+ if not echo:
71
+ curr_json['text'] = gpt2_tokenizer.decode(total_sequences[batch_id][-l:], skip_special_tokens=True)
72
+ else:
73
+ curr_json['text'] = gpt2_tokenizer.decode(total_sequences[batch_id], skip_special_tokens=True)
74
+
75
+ # fill the return json with the top tokens and probs to match the OpenAI return value.
76
+ if num_log_probs is not None:
77
+ curr_json['logprobs'] = {}
78
+ curr_json['logprobs']['top_logprobs'] = []
79
+ curr_json['logprobs']['token_logprobs'] = []
80
+ curr_json['logprobs']['tokens'] = []
81
+ if not echo:
82
+ # cutoff the -1 here because the probs are shifted one over for LMs
83
+ for current_element_top_log_probs, current_element_top_tokens in zip(top_log_probs[batch_id][:-1], top_tokens[batch_id][:-1]):
84
+ # tokens is a list of the top token at each position
85
+ curr_json['logprobs']['tokens'].append(gpt2_tokenizer.decode([current_element_top_tokens[0]]))
86
+ # token_logprobs is a list of the logprob of the top token at each position
87
+ curr_json['logprobs']['token_logprobs'].append(current_element_top_log_probs[0].item())
88
+ # top_logprobs is a list of dicts for the top K tokens. with each entry being {'token_name': log_prob}
89
+ temp = {}
90
+ for log_prob, token in zip(current_element_top_log_probs, current_element_top_tokens):
91
+ temp[gpt2_tokenizer.decode(token.item())] = log_prob.item()
92
+ curr_json['logprobs']['top_logprobs'].append(temp)
93
+ else:
94
+ # same as not above but small tweaks
95
+ # we add null to the front because for the GPT models, they have null probability for the first token
96
+ # (for some reason they don't have an beginning of sentence token)
97
+ curr_json['logprobs']['top_logprobs'].append('null')
98
+ # cutoff the -1 here because the probs are shifted one over for LMs
99
+ for index, (current_element_top_log_probs, current_element_top_tokens) in enumerate(zip(top_log_probs[batch_id][:-1], top_tokens[batch_id][:-1])):
100
+ # skip padding tokens
101
+ if total_sequences[batch_id][index].item() == 50256:
102
+ continue
103
+ temp = {}
104
+ for log_prob, token in zip(current_element_top_log_probs, current_element_top_tokens):
105
+ temp[gpt2_tokenizer.decode(token.item())] = log_prob.item()
106
+ curr_json['logprobs']['top_logprobs'].append(temp)
107
+ for index in range(len(probs[batch_id])):
108
+ curr_json['logprobs']['tokens'].append(gpt2_tokenizer.decode([total_sequences[batch_id][index]]))
109
+ curr_json['logprobs']['token_logprobs'].append('null')
110
+ for index, log_probs_token_position_j in enumerate(logprobs[batch_id][:-1]):
111
+ # probs are left shifted for LMs
112
+ curr_json['logprobs']['token_logprobs'].append(log_probs_token_position_j[total_sequences[batch_id][index+1]])
113
+
114
+ choices.append(curr_json)
115
+ # print("curr_json=", curr_json)
116
+ '''
117
+ e.g.,
118
+ num_tokens_to_predict=1
119
+ curr_json= {
120
+ 'text': ' I', # 当前生成的top词
121
+ 'logprobs': {'top_logprobs': [{' I': -3.4267239570617676, '\n': -3.5073862075805664, ...], # top100词及其socre
122
+ 'token_logprobs': [-3.4267239570617676], # 当前top词的score
123
+ 'tokens': [' I']}
124
+ }
125
+ num_tokens_to_predict=2
126
+ curr_json= {
127
+ 'text': '\nThe', # 如果指定生成两个词,则为两个词
128
+ 'logprobs': {'top_logprobs': [ # 两个位置对应的预测的score
129
+ {'\n': -3.186706304550171, '\xa0': -3.222092390060425, ' We': -6.781067848205566, ...},
130
+ {'The': -2.5251243114471436, '"': -2.857935667037964, ...],
131
+ 'token_logprobs': [-3.186706304550171, -2.5251243114471436], # 生成的词的score
132
+ 'tokens': ['\n', 'The']}
133
+ }
134
+ '''
135
+ return_json['choices'] = choices
136
+ # print("="*50)
137
+ # print("return_json=", return_json)
138
+ return return_json
tools/model_utils/parameter_freeze.py ADDED
@@ -0,0 +1,126 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ # @Time : 2023/02/18 02:07 p.m.
3
+ # @Author : JianingWang
4
+ # @File : parameter_freeze.py
5
+
6
+ import torch
7
+
8
+
9
+ """
10
+ This is use for parameter fixing and unfreezing, which can be viewed as parameter-efficient settings.
11
+ """
12
+ class ParameterFreeze():
13
+ # freeze all parameters
14
+ def freeze_lm(self, model: torch.nn.Module):
15
+ for name, param in model.named_parameters():
16
+ param.requires_grad = False
17
+ return model
18
+
19
+ # freeze all parameters without cls / mlm head
20
+ def freeze_lm_encoder(self, model: torch.nn.Module):
21
+ for name, param in model.named_parameters():
22
+ if "lm_head" in name or ("cls" in name):
23
+ print(name)
24
+ continue
25
+ param.requires_grad = False
26
+ return model
27
+
28
+ # freeze all parameters without bias
29
+ def freeze_lm_finetune_bias(self, model: torch.nn.Module):
30
+ for name, param in model.named_parameters():
31
+ if "bias" in name:
32
+ print(name)
33
+ continue
34
+ param.requires_grad = False
35
+ return model
36
+
37
+ # freeze the component that user defined
38
+ def freeze_lm_component(self, model: torch.nn.Module, component: str):
39
+ if "attention" in component:
40
+ for name, param in model.named_parameters():
41
+ if "attention" in name:
42
+ if "output" in component:
43
+ if "output" in name:
44
+ continue
45
+ else:
46
+ continue
47
+ param.requires_grad = False
48
+ model = self.unfreeze_classification_head(model)
49
+ elif "feedforward" in component:
50
+ for name, param in model.named_parameters():
51
+ if "dense" in name and "attention" not in name:
52
+ if "output" in component:
53
+ if "output" in name:
54
+ continue
55
+ else:
56
+ if "intermediate" in component:
57
+ if "intermediate" in name:
58
+ continue
59
+ param.requires_grad = False
60
+ model = self.unfreeze_classification_head(model)
61
+ elif component == "adapter":
62
+ for name, param in model.named_parameters():
63
+ if "adapter" in name:
64
+ continue
65
+
66
+ param.requires_grad = False
67
+ model = self.unfreeze_classification_head(model)
68
+ elif "embedding" in component:
69
+ for name, param in model.named_parameters():
70
+ if "embedding" in name:
71
+ continue
72
+
73
+ param.requires_grad = False
74
+ model = self.unfreeze_classification_head(model)
75
+ elif "bias" in component:
76
+ for name, param in model.named_parameters():
77
+ if "bias" in name:
78
+ continue
79
+ param.requires_grad = False
80
+ model = self.unfreeze_classification_head(model)
81
+ elif "head" in component:
82
+ for name, param in model.named_parameters():
83
+ param.requires_grad = False
84
+ model = self.unfreeze_classification_head(model)
85
+
86
+ elif "prompt_emb" in component:
87
+ for name, param in model.named_parameters():
88
+ if "prompt_emb" in name:
89
+ continue
90
+ param.requires_grad = False
91
+ return model
92
+
93
+ # unfreeze cls head
94
+ def unfreeze_classification_head(self, model: torch.nn.Module):
95
+ for name, param in model.named_parameters():
96
+ if "lm_head" in name or ("cls" in name) or ("classifier" in name):
97
+ param.requires_grad = True
98
+ return model
99
+
100
+ # freeze k layers
101
+ def freeze_lm_k_layers(self, model: torch.nn.Module, k):
102
+ keep_layers = []
103
+ update_parameters = []
104
+ for i in range(k):
105
+ keep_layers.append("layer."+str(23-i))
106
+
107
+ for name, param in model.named_parameters():
108
+ update = False
109
+ for layer_num in keep_layers:
110
+ if layer_num in name:
111
+ if "dense" in name and "attention" not in name:
112
+ if "output" in name:
113
+ print(name)
114
+ update_parameters.append(name)
115
+ update = True
116
+
117
+ if not update:
118
+ param.requires_grad = False
119
+ model = self.unfreeze_classification_head(model)
120
+ return model
121
+
122
+
123
+ def unfreeze_lm(self, model: torch.nn.Module):
124
+ for param in model.parameters():
125
+ param.requires_grad = True
126
+ return model
tools/model_utils/uncertainty.py ADDED
@@ -0,0 +1,137 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ # @Time : 2023/04/18 08:11 p.m.
3
+ # @Author : JianingWang
4
+ # @File : uncertainty.py
5
+
6
+ from sklearn.utils import shuffle
7
+ import logging
8
+ import numpy as np
9
+ import os
10
+ import random
11
+
12
+
13
+ logger = logging.getLogger(__name__)
14
+
15
+
16
+ def get_BALD_acquisition(y_T):
17
+
18
+ expected_entropy = - np.mean(np.sum(y_T * np.log(y_T + 1e-10), axis=-1), axis=0)
19
+ expected_p = np.mean(y_T, axis=0)
20
+ entropy_expected_p = - np.sum(expected_p * np.log(expected_p + 1e-10), axis=-1)
21
+ return (entropy_expected_p - expected_entropy)
22
+
23
+
24
+ def sample_by_bald_difficulty(tokenizer, X, y_mean, y_var, y, num_samples, num_classes, y_T):
25
+
26
+ logger.info ("Sampling by difficulty BALD acquisition function")
27
+ BALD_acq = get_BALD_acquisition(y_T)
28
+ p_norm = np.maximum(np.zeros(len(BALD_acq)), BALD_acq)
29
+ p_norm = p_norm / np.sum(p_norm)
30
+ indices = np.random.choice(len(X['input_ids']), num_samples, p=p_norm, replace=False)
31
+ X_s = {"input_ids": X["input_ids"][indices], "token_type_ids": X["token_type_ids"][indices], "attention_mask": X["attention_mask"][indices]}
32
+ y_s = y[indices]
33
+ w_s = y_var[indices][:,0]
34
+ return X_s, y_s, w_s
35
+
36
+
37
+ def sample_by_bald_easiness(tokenizer, X, y_mean, y_var, y, num_samples, num_classes, y_T):
38
+
39
+ logger.info ("Sampling by easy BALD acquisition function")
40
+ BALD_acq = get_BALD_acquisition(y_T)
41
+ p_norm = np.maximum(np.zeros(len(BALD_acq)), (1. - BALD_acq)/np.sum(1. - BALD_acq))
42
+ p_norm = p_norm / np.sum(p_norm)
43
+ logger.info (p_norm[:10])
44
+ indices = np.random.choice(len(X['input_ids']), num_samples, p=p_norm, replace=False)
45
+ X_s = {"input_ids": X["input_ids"][indices], "token_type_ids": X["token_type_ids"][indices], "attention_mask": X["attention_mask"][indices]}
46
+ y_s = y[indices]
47
+ w_s = y_var[indices][:,0]
48
+ return X_s, y_s, w_s
49
+
50
+
51
+ def sample_by_bald_class_easiness(tokenizer, X, y_mean, y_var, y, num_samples, num_classes, y_T):
52
+
53
+ logger.info ("Sampling by easy BALD acquisition function per class")
54
+ BALD_acq = get_BALD_acquisition(y_T)
55
+ BALD_acq = (1. - BALD_acq)/np.sum(1. - BALD_acq)
56
+ logger.info (BALD_acq)
57
+ samples_per_class = num_samples // num_classes
58
+ X_s_input_ids, X_s_token_type_ids, X_s_attention_mask, X_s_mask_pos, y_s, w_s = [], [], [], [], [], []
59
+
60
+ for label in range(num_classes):
61
+ # X_input_ids, X_token_type_ids, X_attention_mask = np.array(X['input_ids'])[y == label], np.array(X['token_type_ids'])[y == label], np.array(X['attention_mask'])[y == label]
62
+ X_input_ids, X_attention_mask = np.array(X['input_ids'])[y == label], np.array(X['attention_mask'])[y == label]
63
+ if "token_type_ids" in X.features:
64
+ X_token_type_ids = np.array(X['token_type_ids'])[y == label]
65
+ if "mask_pos" in X.features:
66
+ X_mask_pos = np.array(X['mask_pos'])[y == label]
67
+ y_ = y[y==label]
68
+ y_var_ = y_var[y == label]
69
+ # p = y_mean[y == label]
70
+ p_norm = BALD_acq[y==label]
71
+ p_norm = np.maximum(np.zeros(len(p_norm)), p_norm)
72
+ p_norm = p_norm/np.sum(p_norm)
73
+ if len(X_input_ids) < samples_per_class:
74
+ logger.info ("Sampling with replacement.")
75
+ replace = True
76
+ else:
77
+ replace = False
78
+ if len(X_input_ids) == 0: # add by wjn
79
+ continue
80
+ indices = np.random.choice(len(X_input_ids), samples_per_class, p=p_norm, replace=replace)
81
+ X_s_input_ids.extend(X_input_ids[indices])
82
+ # X_s_token_type_ids.extend(X_token_type_ids[indices])
83
+ X_s_attention_mask.extend(X_attention_mask[indices])
84
+ if "token_type_ids" in X.features:
85
+ X_s_token_type_ids.extend(X_token_type_ids[indices])
86
+ if "mask_pos" in X.features:
87
+ X_s_mask_pos.extend(X_mask_pos[indices])
88
+ y_s.extend(y_[indices])
89
+ w_s.extend(y_var_[indices][:,0])
90
+
91
+ # X_s_input_ids, X_s_token_type_ids, X_s_attention_mask, y_s, w_s = shuffle(X_s_input_ids, X_s_token_type_ids, X_s_attention_mask, y_s, w_s)
92
+ if "token_type_ids" in X.features and "mask_pos" not in X.features:
93
+ X_s_input_ids, X_s_token_type_ids, X_s_attention_mask, y_s, w_s = shuffle(X_s_input_ids, X_s_token_type_ids, X_s_attention_mask, y_s, w_s)
94
+ elif "token_type_ids" not in X.features and "mask_pos" in X.features:
95
+ X_s_input_ids, X_s_mask_pos, X_s_attention_mask, y_s, w_s = shuffle(X_s_input_ids, X_s_mask_pos, X_s_attention_mask, y_s, w_s)
96
+ elif "token_type_ids" in X.features and "mask_pos" in X.features:
97
+ X_s_input_ids, X_s_token_type_ids, X_s_mask_pos, X_s_attention_mask, y_s, w_s = shuffle(X_s_input_ids, X_s_token_type_ids, X_s_mask_pos, X_s_attention_mask, y_s, w_s)
98
+ else:
99
+ X_s_input_ids, X_s_attention_mask, y_s, w_s = shuffle(X_s_input_ids, X_s_attention_mask, y_s, w_s)
100
+
101
+ pseudo_labeled_input = {
102
+ 'input_ids': np.array(X_s_input_ids),
103
+ 'attention_mask': np.array(X_s_attention_mask)
104
+ }
105
+ if "token_type_ids" in X.features:
106
+ pseudo_labeled_input['token_type_ids'] = np.array(X_s_token_type_ids)
107
+ if "mask_pos" in X.features:
108
+ pseudo_labeled_input['mask_pos'] = np.array(X_s_mask_pos)
109
+ return pseudo_labeled_input, np.array(y_s), np.array(w_s)
110
+
111
+
112
+ def sample_by_bald_class_difficulty(tokenizer, X, y_mean, y_var, y, num_samples, num_classes, y_T):
113
+
114
+ logger.info ("Sampling by difficulty BALD acquisition function per class")
115
+ BALD_acq = get_BALD_acquisition(y_T)
116
+ samples_per_class = num_samples // num_classes
117
+ X_s_input_ids, X_s_token_type_ids, X_s_attention_mask, y_s, w_s = [], [], [], [], []
118
+ for label in range(num_classes):
119
+ X_input_ids, X_token_type_ids, X_attention_mask = X['input_ids'][y == label], X['token_type_ids'][y == label], X['attention_mask'][y == label]
120
+ y_ = y[y==label]
121
+ y_var_ = y_var[y == label]
122
+ p_norm = BALD_acq[y==label]
123
+ p_norm = np.maximum(np.zeros(len(p_norm)), p_norm)
124
+ p_norm = p_norm/np.sum(p_norm)
125
+ if len(X_input_ids) < samples_per_class:
126
+ replace = True
127
+ logger.info ("Sampling with replacement.")
128
+ else:
129
+ replace = False
130
+ indices = np.random.choice(len(X_input_ids), samples_per_class, p=p_norm, replace=replace)
131
+ X_s_input_ids.extend(X_input_ids[indices])
132
+ X_s_token_type_ids.extend(X_token_type_ids[indices])
133
+ X_s_attention_mask.extend(X_attention_mask[indices])
134
+ y_s.extend(y_[indices])
135
+ w_s.extend(y_var_[indices][:,0])
136
+ X_s_input_ids, X_s_token_type_ids, X_s_attention_mask, y_s, w_s = shuffle(X_s_input_ids, X_s_token_type_ids, X_s_attention_mask, y_s, w_s)
137
+ return {'input_ids': np.array(X_s_input_ids), 'token_type_ids': np.array(X_s_token_type_ids), 'attention_mask': np.array(X_s_attention_mask)}, np.array(y_s), np.array(w_s)
tools/processing_utils/common.py ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ # @Time : 2021/12/2 5:41 p.m.
3
+ # @Author : JianingWang
4
+ # @File : common.py
5
+
6
+
7
+ def is_chinese_char(cp):
8
+ """Checks whether CP is the codepoint of a CJK character."""
9
+ # This defines a "chinese character" as anything in the CJK Unicode block:
10
+ # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
11
+ #
12
+ # Note that the CJK Unicode block is NOT all Japanese and Korean characters,
13
+ # despite its name. The modern Korean Hangul alphabet is a different block,
14
+ # as is Japanese Hiragana and Katakana. Those alphabets are used to write
15
+ # space-separated words, so they are not treated specially and handled
16
+ # like the all of the other languages.
17
+ if (
18
+ (0x4E00 <= cp <= 0x9FFF)
19
+ or (0x3400 <= cp <= 0x4DBF) #
20
+ or (0x20000 <= cp <= 0x2A6DF) #
21
+ or (0x2A700 <= cp <= 0x2B73F) #
22
+ or (0x2B740 <= cp <= 0x2B81F) #
23
+ or (0x2B820 <= cp <= 0x2CEAF) #
24
+ or (0xF900 <= cp <= 0xFAFF)
25
+ or (0x2F800 <= cp <= 0x2FA1F) #
26
+ ): #
27
+ return True
28
+
29
+ return False
30
+
31
+
32
+ def is_chinese(word: str):
33
+ # word like "180" or "身高" or "神"
34
+ for char in word:
35
+ char = ord(char)
36
+ if not is_chinese_char(char):
37
+ return 0
38
+ return 1
tools/processing_utils/sampler.py ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ # @Time : 2021/12/2 5:41 p.m.
3
+ # @Author : JianingWang
4
+ # @File : sampler.py
5
+
6
+ import numpy as np
7
+ from typing import Optional
8
+
9
+ """
10
+ random sampling for each label
11
+ """
12
+ def random_sampling(raw_datasets, num_examples_per_label: Optional[int]=16):
13
+ label_list = raw_datasets["label"] # [0, 1, 0, 0, ...]
14
+ label_dict = dict()
15
+ # denote index of each label
16
+ for ei, label in enumerate(label_list):
17
+ if label not in label_dict.keys():
18
+ label_dict[label] = list()
19
+ label_dict[label].append(ei)
20
+ # random sample k examples of each class
21
+ few_example_ids = list()
22
+ for label, eid_list in label_dict.items():
23
+ idxs = np.random.choice(len(eid_list), size=num_examples_per_label, replace=False)
24
+ selected_eids = [eid_list[i] for i in idxs]
25
+ few_example_ids.extend(selected_eids)
26
+ return few_example_ids
tools/processing_utils/tokenizer/JiebaTokenizer.py ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ # @Time : 2021/12/8 12:07 a.m.
3
+ # @Author : JianingWang
4
+ # @File : JiebaTokenizer
5
+
6
+ import jieba
7
+ from transformers import BertTokenizer
8
+
9
+
10
+ class JiebaTokenizer(BertTokenizer):
11
+ def __init__(
12
+ self, pre_tokenizer=lambda x: jieba.cut(x, HMM=False), *args, **kwargs
13
+ ):
14
+ super().__init__(*args, **kwargs)
15
+ self.pre_tokenizer = pre_tokenizer
16
+
17
+ def _tokenize(self, text, *arg, **kwargs):
18
+ split_tokens = []
19
+ for text in self.pre_tokenizer(text):
20
+ if text in self.vocab:
21
+ split_tokens.append(text)
22
+ else:
23
+ split_tokens.extend(super()._tokenize(text))
24
+ return split_tokens
tools/processing_utils/tokenizer/__init__.py ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ # @Time : 2021/12/8 12:07 上午
3
+ # @Author : JianingWang
4
+ # @File : __init__.py
tools/processing_utils/tokenizer/tokenizer_utils.py ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import AutoTokenizer
2
+
3
+ """
4
+ obtain special tokens
5
+ """
6
+ def get_special_token_mapping(tokenizer: AutoTokenizer):
7
+ if "t5" in type(tokenizer).__name__.lower():
8
+ special_token_mapping = {
9
+ "cls": 3, "mask": 32099, "sep": tokenizer.eos_token_id,
10
+ "sep+": tokenizer.eos_token_id,
11
+ "pseudo_token": tokenizer.unk_token_id
12
+ }
13
+ else:
14
+ special_token_mapping = {
15
+ "cls": tokenizer.cls_token_id, "mask": tokenizer.mask_token_id, "sep": tokenizer.sep_token_id,
16
+ "sep+": tokenizer.sep_token_id,
17
+ "pseudo_token": tokenizer.unk_token_id
18
+ }
19
+ return special_token_mapping
tools/runner_utils/__init__.py ADDED
File without changes
tools/runner_utils/conifg_extensive.py ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import AutoConfig
2
+ from config import ModelArguments
3
+
4
+
5
+ # add external config.
6
+ def config_extensive(hf_config: AutoConfig, model_config: ModelArguments):
7
+ hf_config.use_prompt_for_cls = model_config.use_prompt_for_cls
8
+ hf_config.use_freezing = model_config.use_freezing
9
+ hf_config.adapter_choice = model_config.adapter_choice
10
+ hf_config.adapter_dim = model_config.adapter_dim
11
+ hf_config.pre_seq_len = model_config.pre_seq_len
12
+ hf_config.prefix_projection = model_config.prefix_projection
13
+ hf_config.prefix_hidden_size = model_config.prefix_hidden_size
14
+ hf_config.hidden_dropout_prob = model_config.hidden_dropout_prob
15
+ return hf_config
tools/runner_utils/log_util.py ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import sys
2
+ import logging
3
+ import datasets
4
+ import transformers
5
+
6
+
7
+ def init_logger(log_file, log_level, dist_rank):
8
+ datasets.utils.logging.set_verbosity(log_level)
9
+ transformers.utils.logging.set_verbosity(log_level)
10
+ transformers.utils.logging.enable_default_handler()
11
+ transformers.utils.logging.enable_explicit_format()
12
+ datasets.utils.logging.disable_propagation()
13
+ # transformers.utils.logging.enable_propagation()
14
+
15
+ logger = logging.getLogger("")
16
+ log_format = logging.Formatter(fmt="[%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s >> %(message)s", datefmt="%Y-%m-%d %H:%M:%S")
17
+ logger.setLevel(log_level)
18
+ console_handler = logging.StreamHandler(sys.stderr)
19
+ console_handler.setFormatter(log_format)
20
+ logger.addHandler(console_handler)
21
+ # transformer_logger = logging.getLogger("transformers")
22
+ # transformer_logger.handlers = []
23
+ # transformer_logger.propagate = True
24
+
25
+ if dist_rank in [-1, 0]:
26
+ file_handler = logging.FileHandler(log_file, mode="a")
27
+ file_handler.setLevel(log_level)
28
+ file_handler.setFormatter(log_format)
29
+ logger.addHandler(file_handler)
30
+ logging.getLogger("transformers").addHandler(file_handler)
tools/runner_utils/retrying.py ADDED
@@ -0,0 +1,288 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ # @Time : 2021/12/24 4:05 p.m.
3
+ # @Author : JianingWang
4
+ # @File : retrying.py
5
+
6
+ import random
7
+ import six
8
+ import sys
9
+ import time
10
+ import traceback
11
+
12
+
13
+ MAX_WAIT = 1073741823
14
+
15
+
16
+ def _retry_if_exception_of_type(retryable_types):
17
+ def _retry_if_exception_these_types(exception):
18
+ return isinstance(exception, retryable_types)
19
+ return _retry_if_exception_these_types
20
+
21
+
22
+ def retry(*dargs, **dkw):
23
+ """
24
+ Decorator function that instantiates the Retrying object
25
+ @param *dargs: positional arguments passed to Retrying object
26
+ @param **dkw: keyword arguments passed to the Retrying object
27
+ """
28
+ # support both @retry and @retry() as valid syntax
29
+ if len(dargs) == 1 and callable(dargs[0]):
30
+ def wrap_simple(f):
31
+
32
+ @six.wraps(f)
33
+ def wrapped_f(*args, **kw):
34
+ return Retrying().call(f, *args, **kw)
35
+
36
+ return wrapped_f
37
+
38
+ return wrap_simple(dargs[0])
39
+
40
+ else:
41
+ def wrap(f):
42
+
43
+ @six.wraps(f)
44
+ def wrapped_f(*args, **kw):
45
+ return Retrying(*dargs, **dkw).call(f, *args, **kw)
46
+
47
+ return wrapped_f
48
+
49
+ return wrap
50
+
51
+
52
+ class Retrying(object):
53
+
54
+ def __init__(self,
55
+ stop=None, wait=None,
56
+ stop_max_attempt_number=None,
57
+ stop_max_delay=None,
58
+ wait_fixed=None,
59
+ wait_random_min=None, wait_random_max=None,
60
+ wait_incrementing_start=None, wait_incrementing_increment=None,
61
+ wait_incrementing_max=None,
62
+ wait_exponential_multiplier=None, wait_exponential_max=None,
63
+ retry_on_exception=None,
64
+ retry_on_result=None,
65
+ wrap_exception=False,
66
+ stop_func=None,
67
+ wait_func=None,
68
+ wait_jitter_max=None,
69
+ before_attempts=None,
70
+ after_attempts=None,
71
+ skip_raise=False):
72
+
73
+ self._stop_max_attempt_number = 5 if stop_max_attempt_number is None else stop_max_attempt_number
74
+ self._stop_max_delay = 100 if stop_max_delay is None else stop_max_delay
75
+ self._wait_fixed = 1000 if wait_fixed is None else wait_fixed
76
+ self._wait_random_min = 0 if wait_random_min is None else wait_random_min
77
+ self._wait_random_max = 1000 if wait_random_max is None else wait_random_max
78
+ self._wait_incrementing_start = 0 if wait_incrementing_start is None else wait_incrementing_start
79
+ self._wait_incrementing_increment = 100 if wait_incrementing_increment is None else wait_incrementing_increment
80
+ self._wait_exponential_multiplier = 1 if wait_exponential_multiplier is None else wait_exponential_multiplier
81
+ self._wait_exponential_max = MAX_WAIT if wait_exponential_max is None else wait_exponential_max
82
+ self._wait_incrementing_max = MAX_WAIT if wait_incrementing_max is None else wait_incrementing_max
83
+ self._wait_jitter_max = 0 if wait_jitter_max is None else wait_jitter_max
84
+ self._before_attempts = before_attempts
85
+ self._after_attempts = after_attempts
86
+ self._skip_raise = skip_raise
87
+
88
+ # stop behavior
89
+ stop_funcs = []
90
+ if stop_max_attempt_number is not None:
91
+ stop_funcs.append(self.stop_after_attempt)
92
+
93
+ if stop_max_delay is not None:
94
+ stop_funcs.append(self.stop_after_delay)
95
+
96
+ if stop_func is not None:
97
+ self.stop = stop_func
98
+
99
+ elif stop is None:
100
+ self.stop = lambda attempts, delay: any(f(attempts, delay) for f in stop_funcs)
101
+
102
+ else:
103
+ self.stop = getattr(self, stop)
104
+
105
+ # wait behavior
106
+ wait_funcs = [lambda *args, **kwargs: 0]
107
+ if wait_fixed is not None:
108
+ wait_funcs.append(self.fixed_sleep)
109
+
110
+ if wait_random_min is not None or wait_random_max is not None:
111
+ wait_funcs.append(self.random_sleep)
112
+
113
+ if wait_incrementing_start is not None or wait_incrementing_increment is not None:
114
+ wait_funcs.append(self.incrementing_sleep)
115
+
116
+ if wait_exponential_multiplier is not None or wait_exponential_max is not None:
117
+ wait_funcs.append(self.exponential_sleep)
118
+
119
+ if wait_func is not None:
120
+ self.wait = wait_func
121
+
122
+ elif wait is None:
123
+ self.wait = lambda attempts, delay: max(f(attempts, delay) for f in wait_funcs)
124
+
125
+ else:
126
+ self.wait = getattr(self, wait)
127
+
128
+ # retry on exception filter
129
+ if retry_on_exception is None:
130
+ self._retry_on_exception = self.always_reject
131
+ else:
132
+ # this allows for providing a tuple of exception types that
133
+ # should be allowed to retry on, and avoids having to create
134
+ # a callback that does the same thing
135
+ if isinstance(retry_on_exception, (tuple)):
136
+ retry_on_exception = _retry_if_exception_of_type(
137
+ retry_on_exception)
138
+ self._retry_on_exception = retry_on_exception
139
+
140
+ # retry on result filter
141
+ if retry_on_result is None:
142
+ self._retry_on_result = self.never_reject
143
+ else:
144
+ self._retry_on_result = retry_on_result
145
+
146
+ self._wrap_exception = wrap_exception
147
+
148
+ def stop_after_attempt(self, previous_attempt_number, delay_since_first_attempt_ms):
149
+ """Stop after the previous attempt >= stop_max_attempt_number."""
150
+ return previous_attempt_number >= self._stop_max_attempt_number
151
+
152
+ def stop_after_delay(self, previous_attempt_number, delay_since_first_attempt_ms):
153
+ """Stop after the time from the first attempt >= stop_max_delay."""
154
+ return delay_since_first_attempt_ms >= self._stop_max_delay
155
+
156
+ @staticmethod
157
+ def no_sleep(previous_attempt_number, delay_since_first_attempt_ms):
158
+ """Don"t sleep at all before retrying."""
159
+ return 0
160
+
161
+ def fixed_sleep(self, previous_attempt_number, delay_since_first_attempt_ms):
162
+ """Sleep a fixed amount of time between each retry."""
163
+ return self._wait_fixed
164
+
165
+ def random_sleep(self, previous_attempt_number, delay_since_first_attempt_ms):
166
+ """Sleep a random amount of time between wait_random_min and wait_random_max"""
167
+ return random.randint(self._wait_random_min, self._wait_random_max)
168
+
169
+ def incrementing_sleep(self, previous_attempt_number, delay_since_first_attempt_ms):
170
+ """
171
+ Sleep an incremental amount of time after each attempt, starting at
172
+ wait_incrementing_start and incrementing by wait_incrementing_increment
173
+ """
174
+ result = self._wait_incrementing_start + (self._wait_incrementing_increment * (previous_attempt_number - 1))
175
+ if result > self._wait_incrementing_max:
176
+ result = self._wait_incrementing_max
177
+ if result < 0:
178
+ result = 0
179
+ return result
180
+
181
+ def exponential_sleep(self, previous_attempt_number, delay_since_first_attempt_ms):
182
+ exp = 2 ** previous_attempt_number
183
+ result = self._wait_exponential_multiplier * exp
184
+ if result > self._wait_exponential_max:
185
+ result = self._wait_exponential_max
186
+ if result < 0:
187
+ result = 0
188
+ return result
189
+
190
+ @staticmethod
191
+ def never_reject(result):
192
+ return False
193
+
194
+ @staticmethod
195
+ def always_reject(result):
196
+ return True
197
+
198
+ def should_reject(self, attempt):
199
+ reject = False
200
+ if attempt.has_exception:
201
+ reject |= self._retry_on_exception(attempt.value[1])
202
+ else:
203
+ reject |= self._retry_on_result(attempt.value)
204
+
205
+ return reject
206
+
207
+ def call(self, fn, *args, **kwargs):
208
+ start_time = int(round(time.time() * 1000))
209
+ attempt_number = 1
210
+ while True:
211
+ if self._before_attempts:
212
+ self._before_attempts(attempt_number)
213
+
214
+ try:
215
+ attempt = Attempt(fn(*args, **kwargs), attempt_number, False)
216
+ except:
217
+ tb = sys.exc_info()
218
+ attempt = Attempt(tb, attempt_number, True)
219
+
220
+ if not self.should_reject(attempt):
221
+ return attempt.get(self._wrap_exception)
222
+
223
+ if self._after_attempts:
224
+ self._after_attempts(attempt_number)
225
+
226
+ delay_since_first_attempt_ms = int(round(time.time() * 1000)) - start_time
227
+ if self.stop(attempt_number, delay_since_first_attempt_ms):
228
+ if not self._wrap_exception and attempt.has_exception:
229
+ # get() on an attempt with an exception should cause it to be raised, but raise just in case
230
+ if not self._skip_raise:
231
+ raise attempt.get()
232
+ else:
233
+ break
234
+ else:
235
+ raise RetryError(attempt)
236
+ else:
237
+ sleep = self.wait(attempt_number, delay_since_first_attempt_ms)
238
+ if self._wait_jitter_max:
239
+ jitter = random.random() * self._wait_jitter_max
240
+ sleep = sleep + max(0, jitter)
241
+ time.sleep(sleep / 1000.0)
242
+
243
+ attempt_number += 1
244
+
245
+
246
+ class Attempt(object):
247
+ """
248
+ An Attempt encapsulates a call to a target function that may end as a
249
+ normal return value from the function or an Exception depending on what
250
+ occurred during the execution.
251
+ """
252
+
253
+ def __init__(self, value, attempt_number, has_exception):
254
+ self.value = value
255
+ self.attempt_number = attempt_number
256
+ self.has_exception = has_exception
257
+
258
+ def get(self, wrap_exception=False):
259
+ """
260
+ Return the return value of this Attempt instance or raise an Exception.
261
+ If wrap_exception is true, this Attempt is wrapped inside of a
262
+ RetryError before being raised.
263
+ """
264
+ if self.has_exception:
265
+ if wrap_exception:
266
+ raise RetryError(self)
267
+ else:
268
+ six.reraise(self.value[0], self.value[1], self.value[2])
269
+ else:
270
+ return self.value
271
+
272
+ def __repr__(self):
273
+ if self.has_exception:
274
+ return "Attempts: {0}, Error:\n{1}".format(self.attempt_number, "".join(traceback.format_tb(self.value[2])))
275
+ else:
276
+ return "Attempts: {0}, Value: {1}".format(self.attempt_number, self.value)
277
+
278
+
279
+ class RetryError(Exception):
280
+ """
281
+ A RetryError encapsulates the last Attempt instance right before giving up.
282
+ """
283
+
284
+ def __init__(self, last_attempt):
285
+ self.last_attempt = last_attempt
286
+
287
+ def __str__(self):
288
+ return "RetryError[{0}]".format(self.last_attempt)
tools/runner_utils/set_seed.py ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import random
3
+ import numpy as np
4
+
5
+ from transformers.utils import (
6
+ is_tf_available,
7
+ is_torch_available,
8
+ )
9
+
10
+ def set_seed(seed_value: int):
11
+ """
12
+ Helper function for reproducible behavior to set the seed in `random`, `numpy`, `torch` and/or `tf` (if installed).
13
+
14
+ Args:
15
+ seed (`int`): The seed to set.
16
+ """
17
+ random.seed(seed_value)
18
+ np.random.seed(seed_value)
19
+ if is_torch_available():
20
+ torch.manual_seed(seed_value)
21
+ torch.cuda.manual_seed_all(seed_value)
tools/runner_utils/timecost.py ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ # @Time : 2022/3/11 3:06 p.m.
3
+ # @Author : JianingWang
4
+ # @File : time
5
+
6
+ import time
7
+ import logging
8
+
9
+ logger = logging.getLogger(__name__)
10
+
11
+
12
+ def timecost(method):
13
+ def timed(*args, **kw):
14
+ ts = time.time()
15
+ result = method(*args, **kw)
16
+ te = time.time()
17
+ logger.info("%r %2.2f ms" % (method.__name__, (te - ts) * 1000))
18
+ return result
19
+
20
+ return timed