Spaces:
Sleeping
Sleeping
DeepLearning101
commited on
Commit
·
4cda815
1
Parent(s):
a2fef5f
Upload fusion_siamese.py
Browse files
models/sequence_matching/fusion_siamese.py
ADDED
@@ -0,0 +1,225 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# @Time : 2022/4/21 5:30 下午
|
3 |
+
# @Author : JianingWang
|
4 |
+
# @File : fusion_siamese.py
|
5 |
+
from typing import Optional
|
6 |
+
import torch
|
7 |
+
import numpy as np
|
8 |
+
import torch.nn as nn
|
9 |
+
from dataclasses import dataclass
|
10 |
+
from torch.nn import BCEWithLogitsLoss
|
11 |
+
from transformers import MegatronBertModel, MegatronBertPreTrainedModel
|
12 |
+
from transformers.file_utils import ModelOutput
|
13 |
+
from transformers.models.bert import BertPreTrainedModel, BertModel
|
14 |
+
from transformers.activations import ACT2FN
|
15 |
+
from torch.nn import CrossEntropyLoss, MSELoss, BCEWithLogitsLoss
|
16 |
+
from transformers.modeling_outputs import SequenceClassifierOutput
|
17 |
+
from loss.focal_loss import FocalLoss
|
18 |
+
# from roformer import RoFormerPreTrainedModel, RoFormerModel
|
19 |
+
|
20 |
+
|
21 |
+
class BertPooler(nn.Module):
|
22 |
+
def __init__(self, hidden_size, hidden_act):
|
23 |
+
super().__init__()
|
24 |
+
self.dense = nn.Linear(hidden_size, hidden_size)
|
25 |
+
# self.activation = nn.Tanh()
|
26 |
+
self.activation = ACT2FN[hidden_act]
|
27 |
+
# self.dropout = nn.Dropout(hidden_dropout_prob)
|
28 |
+
|
29 |
+
def forward(self, features):
|
30 |
+
x = features[:, 0, :] # take <s> token (equiv. to [CLS])
|
31 |
+
# x = self.dropout(x)
|
32 |
+
x = self.dense(x)
|
33 |
+
x = self.activation(x)
|
34 |
+
return x
|
35 |
+
|
36 |
+
|
37 |
+
class BertForFusionSiamese(BertPreTrainedModel):
|
38 |
+
def __init__(self, config):
|
39 |
+
super().__init__(config)
|
40 |
+
self.num_labels = config.num_labels
|
41 |
+
self.bert = BertModel(config)
|
42 |
+
self.hidden_size = config.hidden_size
|
43 |
+
self.hidden_act = config.hidden_act
|
44 |
+
self.bert_poor = BertPooler(self.hidden_size, self.hidden_act)
|
45 |
+
self.dense_1 = nn.Linear(self.hidden_size, self.hidden_size)
|
46 |
+
self.dense_2 = nn.Linear(self.hidden_size, self.hidden_size)
|
47 |
+
|
48 |
+
if hasattr(config, "cls_dropout_rate"):
|
49 |
+
cls_dropout_rate = config.cls_dropout_rate
|
50 |
+
else:
|
51 |
+
cls_dropout_rate = config.hidden_dropout_prob
|
52 |
+
self.dropout = nn.Dropout(cls_dropout_rate)
|
53 |
+
self.classifier = nn.Linear(3 * self.hidden_size, config.num_labels)
|
54 |
+
self.init_weights()
|
55 |
+
|
56 |
+
def forward(
|
57 |
+
self,
|
58 |
+
input_ids=None,
|
59 |
+
attention_mask=None,
|
60 |
+
token_type_ids=None,
|
61 |
+
position_ids=None,
|
62 |
+
head_mask=None,
|
63 |
+
inputs_embeds=None,
|
64 |
+
labels=None,
|
65 |
+
output_attentions=None,
|
66 |
+
output_hidden_states=None,
|
67 |
+
return_dict=None,
|
68 |
+
pseudo_label=None,
|
69 |
+
segment_spans=None,
|
70 |
+
pseuso_proba=None
|
71 |
+
):
|
72 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
73 |
+
logits, outputs = None, None
|
74 |
+
inputs = {"input_ids": input_ids, "attention_mask": attention_mask, "token_type_ids": token_type_ids,
|
75 |
+
"position_ids": position_ids,
|
76 |
+
"head_mask": head_mask, "inputs_embeds": inputs_embeds, "output_attentions": output_attentions,
|
77 |
+
"output_hidden_states": output_hidden_states, "return_dict": return_dict}
|
78 |
+
inputs = {k: v for k, v in inputs.items() if v is not None}
|
79 |
+
outputs = self.bert(**inputs)
|
80 |
+
if "sequence_output" in outputs:
|
81 |
+
sequence_output = outputs.sequence_output # [bz, seq_len, dim]
|
82 |
+
else:
|
83 |
+
sequence_output = outputs[0] # [bz, seq_len, dim]
|
84 |
+
|
85 |
+
cls_output = self.bert_poor(sequence_output) # [bz, dim]
|
86 |
+
|
87 |
+
if segment_spans is not None:
|
88 |
+
# 如果输入的是两个segment,则分别进行平均池化
|
89 |
+
seg1_embeddings, seg2_embeddings = list(), list()
|
90 |
+
for ei, sentence_embeddings in enumerate(sequence_output):
|
91 |
+
# sentence_embedding: [seq_len, dim]
|
92 |
+
seg1_start, seg1_end, seg2_start, seg2_end = segment_spans[ei]
|
93 |
+
# print("sentence_embeddings[seg1_start, seg1_end].shape=", sentence_embeddings[seg1_start, seg1_end].shape)
|
94 |
+
# print("torch.mean(sentence_embeddings[seg1_start, seg1_end], 0).shape=", torch.mean(sentence_embeddings[seg1_start, seg1_end], 0).shape)
|
95 |
+
seg1_embeddings.append(torch.mean(sentence_embeddings[seg1_start: seg1_end], 0)) # [dim]
|
96 |
+
seg2_embeddings.append(torch.mean(sentence_embeddings[seg2_start: seg2_end], 0)) # [dim]
|
97 |
+
seg1_embeddings, seg2_embeddings = torch.stack(seg1_embeddings), torch.stack(seg2_embeddings) # [bz, dim]
|
98 |
+
# print("seg1_embeddings.shape=", seg1_embeddings.shape)
|
99 |
+
seg1_embeddings = self.bert_poor.activation(self.dense_1(seg1_embeddings))
|
100 |
+
seg2_embeddings = self.bert_poor.activation(self.dense_1(seg2_embeddings))
|
101 |
+
cls_output = torch.cat([cls_output, seg1_embeddings, seg2_embeddings], dim=-1) # [bz, 3*dim]
|
102 |
+
# cls_output = cls_output + seg1_embeddings + seg2_embeddings # [bz, dim]
|
103 |
+
|
104 |
+
pooler_output = self.dropout(cls_output)
|
105 |
+
# pooler_output = self.LayerNorm(pooler_output)
|
106 |
+
logits = self.classifier(pooler_output)
|
107 |
+
|
108 |
+
loss = None
|
109 |
+
if labels is not None:
|
110 |
+
|
111 |
+
# loss_fct = FocalLoss()
|
112 |
+
loss_fct = CrossEntropyLoss()
|
113 |
+
# 伪标签
|
114 |
+
if pseudo_label is not None:
|
115 |
+
train_logits, pseudo_logits = logits[pseudo_label > 0.9], logits[pseudo_label < 0.1]
|
116 |
+
train_labels, pseudo_labels = labels[pseudo_label > 0.9], labels[pseudo_label < 0.1]
|
117 |
+
train_loss = loss_fct(train_logits.view(-1, self.num_labels),
|
118 |
+
train_labels.view(-1)) if train_labels.nelement() else 0
|
119 |
+
pseudo_loss = loss_fct(pseudo_logits.view(-1, self.num_labels),
|
120 |
+
pseudo_labels.view(-1)) if pseudo_labels.nelement() else 0
|
121 |
+
loss = 0.9 * train_loss + 0.1 * pseudo_loss
|
122 |
+
else:
|
123 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
124 |
+
return SequenceClassifierOutput(
|
125 |
+
loss=loss,
|
126 |
+
logits=logits,
|
127 |
+
hidden_states=outputs.hidden_states,
|
128 |
+
attentions=outputs.attentions,
|
129 |
+
)
|
130 |
+
|
131 |
+
|
132 |
+
|
133 |
+
class BertForWSC(BertPreTrainedModel):
|
134 |
+
def __init__(self, config):
|
135 |
+
super().__init__(config)
|
136 |
+
self.num_labels = config.num_labels
|
137 |
+
self.bert = BertModel(config)
|
138 |
+
self.hidden_size = config.hidden_size
|
139 |
+
self.hidden_act = config.hidden_act
|
140 |
+
self.bert_poor = BertPooler(self.hidden_size, self.hidden_act)
|
141 |
+
self.dense_1 = nn.Linear(self.hidden_size, self.hidden_size)
|
142 |
+
self.dense_2 = nn.Linear(self.hidden_size, self.hidden_size)
|
143 |
+
|
144 |
+
if hasattr(config, "cls_dropout_rate"):
|
145 |
+
cls_dropout_rate = config.cls_dropout_rate
|
146 |
+
else:
|
147 |
+
cls_dropout_rate = config.hidden_dropout_prob
|
148 |
+
self.dropout = nn.Dropout(cls_dropout_rate)
|
149 |
+
self.classifier = nn.Linear(2 * self.hidden_size, config.num_labels)
|
150 |
+
self.init_weights()
|
151 |
+
|
152 |
+
def forward(
|
153 |
+
self,
|
154 |
+
input_ids=None,
|
155 |
+
attention_mask=None,
|
156 |
+
token_type_ids=None,
|
157 |
+
position_ids=None,
|
158 |
+
head_mask=None,
|
159 |
+
inputs_embeds=None,
|
160 |
+
labels=None,
|
161 |
+
output_attentions=None,
|
162 |
+
output_hidden_states=None,
|
163 |
+
return_dict=None,
|
164 |
+
pseudo_label=None,
|
165 |
+
span=None,
|
166 |
+
pseuso_proba=None
|
167 |
+
):
|
168 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
169 |
+
logits, outputs = None, None
|
170 |
+
inputs = {"input_ids": input_ids, "attention_mask": attention_mask, "token_type_ids": token_type_ids,
|
171 |
+
"position_ids": position_ids,
|
172 |
+
"head_mask": head_mask, "inputs_embeds": inputs_embeds, "output_attentions": output_attentions,
|
173 |
+
"output_hidden_states": output_hidden_states, "return_dict": return_dict}
|
174 |
+
inputs = {k: v for k, v in inputs.items() if v is not None}
|
175 |
+
outputs = self.bert(**inputs)
|
176 |
+
if "sequence_output" in outputs:
|
177 |
+
sequence_output = outputs.sequence_output # [bz, seq_len, dim]
|
178 |
+
else:
|
179 |
+
sequence_output = outputs[0] # [bz, seq_len, dim]
|
180 |
+
|
181 |
+
# cls_output = self.bert_poor(sequence_output) # [bz, dim]
|
182 |
+
|
183 |
+
# 如果输入的是两个span,则分别进行平均池化
|
184 |
+
seg1_embeddings, seg2_embeddings = list(), list()
|
185 |
+
# print("span=", span)
|
186 |
+
for ei, sentence_embeddings in enumerate(sequence_output):
|
187 |
+
# sentence_embedding: [seq_len, dim]
|
188 |
+
seg1_start, seg1_end, seg2_start, seg2_end = span[ei]
|
189 |
+
# print("sentence_embeddings[seg1_start, seg1_end].shape=", sentence_embeddings[seg1_start, seg1_end].shape)
|
190 |
+
# print("torch.mean(sentence_embeddings[seg1_start, seg1_end], 0).shape=", torch.mean(sentence_embeddings[seg1_start, seg1_end], 0).shape)
|
191 |
+
seg1_embeddings.append(torch.mean(sentence_embeddings[seg1_start+1: seg1_end], 0)) # [dim]
|
192 |
+
seg2_embeddings.append(torch.mean(sentence_embeddings[seg2_start+1: seg2_end], 0)) # [dim]
|
193 |
+
seg1_embeddings, seg2_embeddings = torch.stack(seg1_embeddings), torch.stack(seg2_embeddings) # [bz, dim]
|
194 |
+
# print("seg1_embeddings.shape=", seg1_embeddings.shape)
|
195 |
+
# seg1_embeddings = self.bert_poor.activation(self.dense_1(seg1_embeddings))
|
196 |
+
# seg2_embeddings = self.bert_poor.activation(self.dense_1(seg2_embeddings))
|
197 |
+
cls_output = torch.cat([seg1_embeddings, seg2_embeddings], dim=-1) # [bz, 3*dim]
|
198 |
+
# cls_output = cls_output + seg1_embeddings + seg2_embeddings # [bz, dim]
|
199 |
+
|
200 |
+
pooler_output = self.dropout(cls_output)
|
201 |
+
# pooler_output = self.LayerNorm(pooler_output)
|
202 |
+
logits = self.classifier(pooler_output)
|
203 |
+
|
204 |
+
loss = None
|
205 |
+
if labels is not None:
|
206 |
+
|
207 |
+
# loss_fct = FocalLoss()
|
208 |
+
loss_fct = CrossEntropyLoss()
|
209 |
+
# 伪标签
|
210 |
+
if pseudo_label is not None:
|
211 |
+
train_logits, pseudo_logits = logits[pseudo_label > 0.9], logits[pseudo_label < 0.1]
|
212 |
+
train_labels, pseudo_labels = labels[pseudo_label > 0.9], labels[pseudo_label < 0.1]
|
213 |
+
train_loss = loss_fct(train_logits.view(-1, self.num_labels),
|
214 |
+
train_labels.view(-1)) if train_labels.nelement() else 0
|
215 |
+
pseudo_loss = loss_fct(pseudo_logits.view(-1, self.num_labels),
|
216 |
+
pseudo_labels.view(-1)) if pseudo_labels.nelement() else 0
|
217 |
+
loss = 0.9 * train_loss + 0.1 * pseudo_loss
|
218 |
+
else:
|
219 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
220 |
+
return SequenceClassifierOutput(
|
221 |
+
loss=loss,
|
222 |
+
logits=logits,
|
223 |
+
hidden_states=outputs.hidden_states,
|
224 |
+
attentions=outputs.attentions,
|
225 |
+
)
|