Spaces:
Sleeping
Sleeping
DeepLearning101
commited on
Commit
·
5894ace
1
Parent(s):
3169cc9
Upload 3 files
Browse files- models/language_modeling/causal_lm.py +278 -0
- models/language_modeling/kpplm.py +752 -0
- models/language_modeling/mlm.py +359 -0
models/language_modeling/causal_lm.py
ADDED
@@ -0,0 +1,278 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# @Time : 2023/2/16 3:35 下午
|
3 |
+
# @Author : JianingWang
|
4 |
+
# @File : mlm.py
|
5 |
+
import logging
|
6 |
+
from typing import Union, Tuple, Optional
|
7 |
+
import torch
|
8 |
+
import torch.nn as nn
|
9 |
+
from tqdm import tqdm
|
10 |
+
from typing import Optional, Tuple
|
11 |
+
from torch.nn import CrossEntropyLoss
|
12 |
+
from transformers import AutoModelForCausalLM
|
13 |
+
from transformers.modeling_outputs import CausalLMOutputWithCrossAttentions
|
14 |
+
from transformers.models.gpt2.modeling_gpt2 import GPT2LMHeadModel, GPT2Model, GPT2PreTrainedModel
|
15 |
+
|
16 |
+
"""
|
17 |
+
Function: Use Causal LM to pre-train GPT-2
|
18 |
+
Notes:
|
19 |
+
- In default, the Causal LM aims to train on all tokens, the label of each token is the next token, which let the model learn in regressive way.
|
20 |
+
- If you want to choose some tokens, or mask some tokens (like MLM), the label of non-masked token should be -100, which can be used for cross-entropy function (only calculate loss at not -100)
|
21 |
+
"""
|
22 |
+
class GPT2ForCausalLM(GPT2PreTrainedModel):
|
23 |
+
_keys_to_ignore_on_load_missing = [r"attn.masked_bias", r"attn.bias", r"lm_head.weight"]
|
24 |
+
|
25 |
+
def __init__(self, config):
|
26 |
+
super().__init__(config)
|
27 |
+
self.transformer = GPT2Model(config)
|
28 |
+
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
29 |
+
|
30 |
+
# Model parallel
|
31 |
+
self.model_parallel = False
|
32 |
+
self.device_map = None
|
33 |
+
|
34 |
+
# Initialize weights and apply final processing
|
35 |
+
self.post_init()
|
36 |
+
|
37 |
+
def get_output_embeddings(self):
|
38 |
+
return self.lm_head
|
39 |
+
|
40 |
+
def set_output_embeddings(self, new_embeddings):
|
41 |
+
self.lm_head = new_embeddings
|
42 |
+
|
43 |
+
def prepare_inputs_for_generation(self, input_ids, past=None, **kwargs):
|
44 |
+
token_type_ids = kwargs.get("token_type_ids", None)
|
45 |
+
# only last token for inputs_ids if past is defined in kwargs
|
46 |
+
if past:
|
47 |
+
input_ids = input_ids[:, -1].unsqueeze(-1)
|
48 |
+
if token_type_ids is not None:
|
49 |
+
token_type_ids = token_type_ids[:, -1].unsqueeze(-1)
|
50 |
+
|
51 |
+
attention_mask = kwargs.get("attention_mask", None)
|
52 |
+
position_ids = kwargs.get("position_ids", None)
|
53 |
+
|
54 |
+
if attention_mask is not None and position_ids is None:
|
55 |
+
# create position_ids on the fly for batch generation
|
56 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
57 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
58 |
+
if past:
|
59 |
+
position_ids = position_ids[:, -1].unsqueeze(-1)
|
60 |
+
else:
|
61 |
+
position_ids = None
|
62 |
+
return {
|
63 |
+
"input_ids": input_ids,
|
64 |
+
"past_key_values": past,
|
65 |
+
"use_cache": kwargs.get("use_cache"),
|
66 |
+
"position_ids": position_ids,
|
67 |
+
"attention_mask": attention_mask,
|
68 |
+
"token_type_ids": token_type_ids,
|
69 |
+
}
|
70 |
+
|
71 |
+
def forward(
|
72 |
+
self,
|
73 |
+
input_ids: Optional[torch.LongTensor] = None,
|
74 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
75 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
76 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
77 |
+
position_ids: Optional[torch.LongTensor] = None,
|
78 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
79 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
80 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
81 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
82 |
+
labels: Optional[torch.LongTensor] = None,
|
83 |
+
use_cache: Optional[bool] = None,
|
84 |
+
output_attentions: Optional[bool] = None,
|
85 |
+
output_hidden_states: Optional[bool] = None,
|
86 |
+
return_dict: Optional[bool] = None,
|
87 |
+
) -> Union[Tuple, CausalLMOutputWithCrossAttentions]:
|
88 |
+
r"""
|
89 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
90 |
+
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
|
91 |
+
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
|
92 |
+
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
|
93 |
+
"""
|
94 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
95 |
+
|
96 |
+
transformer_outputs = self.transformer(
|
97 |
+
input_ids,
|
98 |
+
past_key_values=past_key_values,
|
99 |
+
attention_mask=attention_mask,
|
100 |
+
token_type_ids=token_type_ids,
|
101 |
+
position_ids=position_ids,
|
102 |
+
head_mask=head_mask,
|
103 |
+
inputs_embeds=inputs_embeds,
|
104 |
+
encoder_hidden_states=encoder_hidden_states,
|
105 |
+
encoder_attention_mask=encoder_attention_mask,
|
106 |
+
use_cache=use_cache,
|
107 |
+
output_attentions=output_attentions,
|
108 |
+
output_hidden_states=output_hidden_states,
|
109 |
+
return_dict=return_dict,
|
110 |
+
)
|
111 |
+
hidden_states = transformer_outputs[0]
|
112 |
+
|
113 |
+
# Set device for model parallelism
|
114 |
+
if self.model_parallel:
|
115 |
+
torch.cuda.set_device(self.transformer.first_device)
|
116 |
+
hidden_states = hidden_states.to(self.lm_head.weight.device)
|
117 |
+
|
118 |
+
lm_logits = self.lm_head(hidden_states)
|
119 |
+
|
120 |
+
loss = None
|
121 |
+
if labels is not None:
|
122 |
+
# Shift so that tokens < n predict n
|
123 |
+
shift_logits = lm_logits[..., :-1, :].contiguous()
|
124 |
+
shift_labels = labels[..., 1:].contiguous()
|
125 |
+
# print("shift_labels=", shift_labels)
|
126 |
+
# Flatten the tokens
|
127 |
+
loss_fct = CrossEntropyLoss()
|
128 |
+
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
|
129 |
+
|
130 |
+
if not return_dict:
|
131 |
+
output = (lm_logits,) + transformer_outputs[1:]
|
132 |
+
return ((loss,) + output) if loss is not None else output
|
133 |
+
|
134 |
+
return CausalLMOutputWithCrossAttentions(
|
135 |
+
loss=loss,
|
136 |
+
logits=lm_logits,
|
137 |
+
past_key_values=transformer_outputs.past_key_values,
|
138 |
+
hidden_states=transformer_outputs.hidden_states,
|
139 |
+
attentions=transformer_outputs.attentions,
|
140 |
+
cross_attentions=transformer_outputs.cross_attentions,
|
141 |
+
)
|
142 |
+
|
143 |
+
@staticmethod
|
144 |
+
def _reorder_cache(past: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor) -> Tuple[Tuple[torch.Tensor]]:
|
145 |
+
"""
|
146 |
+
This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
|
147 |
+
[`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
|
148 |
+
beam_idx at every generation step.
|
149 |
+
"""
|
150 |
+
return tuple(
|
151 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past)
|
152 |
+
for layer_past in past
|
153 |
+
)
|
154 |
+
|
155 |
+
|
156 |
+
|
157 |
+
# class GPT2ForCanusalLM(GPT2LMHeadModel):
|
158 |
+
|
159 |
+
# def __init__(self, config):
|
160 |
+
# super().__init__(config)
|
161 |
+
# self.transformer = GPT2Model(config)
|
162 |
+
# self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
163 |
+
|
164 |
+
# # Model parallel
|
165 |
+
# self.model_parallel = False
|
166 |
+
# self.device_map = None
|
167 |
+
|
168 |
+
# # Initialize weights and apply final processing
|
169 |
+
# self.post_init()
|
170 |
+
|
171 |
+
# def forward(
|
172 |
+
# self,
|
173 |
+
# input_ids: Optional[torch.LongTensor] = None, # input token id
|
174 |
+
# past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
175 |
+
# attention_mask: Optional[torch.FloatTensor] = None,
|
176 |
+
# token_type_ids: Optional[torch.LongTensor] = None,
|
177 |
+
# labels: Optional[torch.LongTensor] = None,
|
178 |
+
# label_masks: Optional[torch.LongTensor] = None, # mask=1 means it should be calculated loss
|
179 |
+
# output_attentions=None,
|
180 |
+
# output_hidden_states=None,
|
181 |
+
# return_dict=None,
|
182 |
+
# ):
|
183 |
+
# transformer_outputs = self.transformer(
|
184 |
+
# input_ids,
|
185 |
+
# past_key_values=past_key_values,
|
186 |
+
# attention_mask=attention_mask,
|
187 |
+
# token_type_ids=token_type_ids,
|
188 |
+
# output_attentions=output_attentions,
|
189 |
+
# output_hidden_states=output_hidden_states,
|
190 |
+
# return_dict=return_dict,
|
191 |
+
# )
|
192 |
+
# hidden_states = transformer_outputs[0]
|
193 |
+
# lm_logits = self.lm_head(hidden_states)
|
194 |
+
|
195 |
+
# # print("len(input_ids)=", len(input_ids[0]))
|
196 |
+
# # print("input_ids[-1]=", input_ids[0][-1])
|
197 |
+
|
198 |
+
# loss = None
|
199 |
+
# if labels is not None:
|
200 |
+
# shift_logits = lm_logits[..., :-1, :].contiguous()
|
201 |
+
# # print("shift_logits.shape=", shift_logits.shape)
|
202 |
+
# if labels is None:
|
203 |
+
# labels = input_ids
|
204 |
+
# shift_labels = labels[..., 1:].contiguous()
|
205 |
+
# # print("shift_labels=", shift_labels)
|
206 |
+
# # print("shift_labels.shape=", shift_labels.shape)
|
207 |
+
# # Flatten the tokens
|
208 |
+
# loss_fct = CrossEntropyLoss(reduction="none")
|
209 |
+
# loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)) # [batch_size, lngth]
|
210 |
+
# label_masks = label_masks[..., 1:].contiguous()
|
211 |
+
# # print("loss.shape=", loss.shape)
|
212 |
+
# # print("shift_logits.shape=", shift_logits.shape)
|
213 |
+
# # print("label_masks.shape=", label_masks.shape)
|
214 |
+
# loss = loss.view(shift_logits.size(0), shift_logits.size(1)) * label_masks # [batch_size, length]
|
215 |
+
# loss = torch.sum(loss, axis=1) / torch.sum(label_masks, axis=1) # [batch_size]
|
216 |
+
# # print("loss=", loss)
|
217 |
+
# if not return_dict:
|
218 |
+
# output = (lm_logits,) + transformer_outputs[1:]
|
219 |
+
# return ((loss,) + output) if loss is not None else output
|
220 |
+
|
221 |
+
# return CausalLMOutputWithCrossAttentions(
|
222 |
+
# loss=loss,
|
223 |
+
# logits=lm_logits,
|
224 |
+
# past_key_values=transformer_outputs.past_key_values,
|
225 |
+
# hidden_states=transformer_outputs.hidden_states,
|
226 |
+
# attentions=transformer_outputs.attentions,
|
227 |
+
# cross_attentions=transformer_outputs.cross_attentions,
|
228 |
+
# )
|
229 |
+
|
230 |
+
|
231 |
+
if __name__ == "__main__":
|
232 |
+
from transformers.models.gpt2.tokenization_gpt2 import GPT2Tokenizer
|
233 |
+
# model_path = "/Users/wangjianing/Desktop/开源代码与数据模型/模型/gpt2"
|
234 |
+
model_path = "/wjn/pre-trained-lm/gpt2"
|
235 |
+
tokenizer = GPT2Tokenizer.from_pretrained(model_path)
|
236 |
+
tokenizer.pad_token_id = tokenizer.eos_token_id
|
237 |
+
# print("tokenizer.eos_token_id=", tokenizer.eos_token_id) # 50256
|
238 |
+
model = GPT2LMHeadModel.from_pretrained(model_path)
|
239 |
+
input_text = "My friend Jack invites me to play computer games with him, but my girl friend doesn't agree. I think"
|
240 |
+
inputs = tokenizer(input_text, add_special_tokens=True, return_tensors="pt")
|
241 |
+
inputs["labels"] = inputs["input_ids"]
|
242 |
+
print("inputs=", inputs)
|
243 |
+
"""
|
244 |
+
inputs= {"input_ids": tensor([[ 3666, 1545, 3619, 27671, 502, 284, 711, 3644, 1830, 351,
|
245 |
+
683, 11, 475, 616, 2576, 1545, 1595, 470, 4236, 13,
|
246 |
+
314, 892, 220]]), "attention_mask": tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]), "labels": tensor([[ 3666, 1545, 3619, 27671, 502, 284, 711, 3644, 1830, 351,
|
247 |
+
683, 11, 475, 616, 2576, 1545, 1595, 470, 4236, 13,
|
248 |
+
314, 892, 220]])}
|
249 |
+
|
250 |
+
"""
|
251 |
+
outputs = model(**inputs)
|
252 |
+
print("loss=", outputs[0])
|
253 |
+
"""
|
254 |
+
loss= tensor(3.9444, grad_fn=<NllLossBackward0>)
|
255 |
+
"""
|
256 |
+
output_sequences = model.generate(
|
257 |
+
**inputs,
|
258 |
+
emb_match=None,
|
259 |
+
control_code=None,
|
260 |
+
past_key_values=None,
|
261 |
+
max_length=len(inputs["input_ids"][0]) + 10,
|
262 |
+
min_length=5,
|
263 |
+
temperature=1.0,
|
264 |
+
top_k=1,
|
265 |
+
top_p=0.5, #top_p=0.5,
|
266 |
+
repetition_penalty=1.0, # 重复词惩罚,用于控制生成多样性的文本
|
267 |
+
do_sample=False,
|
268 |
+
num_beams=5,
|
269 |
+
# bad_words_ids=[[628], [198]] if True else None,
|
270 |
+
num_return_sequences=3,
|
271 |
+
)
|
272 |
+
print("output_sequences=", output_sequences)
|
273 |
+
# print("output_sequences=", output_sequences)
|
274 |
+
results = tokenizer.decode(output_sequences[0])
|
275 |
+
print("results=", results)
|
276 |
+
"""
|
277 |
+
results= My friend Jack invites me to play computer games with him, but my girl friend doesn"t agree. I think it"s a good idea to play computer games
|
278 |
+
"""
|
models/language_modeling/kpplm.py
ADDED
@@ -0,0 +1,752 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# @Time : 2022/3/15 21:26
|
3 |
+
# @Author : ruihan.wjn
|
4 |
+
# @File : pk-plm.py
|
5 |
+
|
6 |
+
"""
|
7 |
+
This code is implemented for the paper ""Knowledge Prompting in Pre-trained Langauge Models for Natural Langauge Understanding""
|
8 |
+
"""
|
9 |
+
|
10 |
+
from time import time
|
11 |
+
import torch
|
12 |
+
from torch import nn
|
13 |
+
import torch.nn.functional as F
|
14 |
+
from torch.nn import CrossEntropyLoss
|
15 |
+
from collections import OrderedDict
|
16 |
+
from transformers.models.bert import BertPreTrainedModel, BertModel
|
17 |
+
from transformers.models.roberta import RobertaModel, RobertaPreTrainedModel, RobertaTokenizer, RobertaForMaskedLM
|
18 |
+
from transformers.models.deberta import DebertaModel, DebertaPreTrainedModel, DebertaTokenizer, DebertaForMaskedLM
|
19 |
+
from transformers.models.bert.modeling_bert import BertOnlyMLMHead, BertPreTrainingHeads
|
20 |
+
from transformers.models.roberta.modeling_roberta import RobertaModel, RobertaLMHead
|
21 |
+
from transformers.models.deberta.modeling_deberta import DebertaModel, DebertaLMPredictionHead
|
22 |
+
|
23 |
+
"""
|
24 |
+
kg enhanced corpus structure example:
|
25 |
+
{
|
26 |
+
"token_ids": [20, 46098, 3277, 680, 10, 4066, 278, 9, 11129, 4063, 877, 579, 8, 8750, 14720, 8, 22498, 548,
|
27 |
+
19231, 46098, 3277, 6, 25, 157, 25, 130, 3753, 46098, 3277, 4, 3684, 19809, 10960, 9, 5, 30731, 2788, 914, 5,
|
28 |
+
1675, 8151, 35], "entity_pos": [[8, 11], [13, 15], [26, 27]],
|
29 |
+
"entity_qid": ["Q17582", "Q231978", "Q427013"],
|
30 |
+
"relation_pos": null,
|
31 |
+
"relation_pid": null
|
32 |
+
}
|
33 |
+
"""
|
34 |
+
|
35 |
+
|
36 |
+
from enum import Enum
|
37 |
+
class SiameseDistanceMetric(Enum):
|
38 |
+
"""
|
39 |
+
The metric for the contrastive loss
|
40 |
+
"""
|
41 |
+
EUCLIDEAN = lambda x, y: F.pairwise_distance(x, y, p=2)
|
42 |
+
MANHATTAN = lambda x, y: F.pairwise_distance(x, y, p=1)
|
43 |
+
COSINE_DISTANCE = lambda x, y: 1-F.cosine_similarity(x, y)
|
44 |
+
|
45 |
+
|
46 |
+
class ContrastiveLoss(nn.Module):
|
47 |
+
"""
|
48 |
+
Contrastive loss. Expects as input two texts and a label of either 0 or 1. If the label == 1, then the distance between the
|
49 |
+
two embeddings is reduced. If the label == 0, then the distance between the embeddings is increased.
|
50 |
+
Further information: http://yann.lecun.com/exdb/publis/pdf/hadsell-chopra-lecun-06.pdf
|
51 |
+
:param model: SentenceTransformer model
|
52 |
+
:param distance_metric: Function that returns a distance between two emeddings. The class SiameseDistanceMetric contains pre-defined metrices that can be used
|
53 |
+
:param margin: Negative samples (label == 0) should have a distance of at least the margin value.
|
54 |
+
:param size_average: Average by the size of the mini-batch.
|
55 |
+
Example::
|
56 |
+
from sentence_transformers import SentenceTransformer, SentencesDataset, LoggingHandler, losses
|
57 |
+
from sentence_transformers.readers import InputExample
|
58 |
+
model = SentenceTransformer("distilbert-base-nli-mean-tokens")
|
59 |
+
train_examples = [InputExample(texts=["This is a positive pair", "Where the distance will be minimized"], label=1),
|
60 |
+
InputExample(texts=["This is a negative pair", "Their distance will be increased"], label=0)]
|
61 |
+
train_dataset = SentencesDataset(train_examples, model)
|
62 |
+
train_dataloader = DataLoader(train_dataset, shuffle=True, batch_size=train_batch_size)
|
63 |
+
train_loss = losses.ContrastiveLoss(model=model)
|
64 |
+
"""
|
65 |
+
|
66 |
+
def __init__(self, distance_metric=SiameseDistanceMetric.COSINE_DISTANCE, margin: float = 0.5, size_average:bool = True):
|
67 |
+
super(ContrastiveLoss, self).__init__()
|
68 |
+
self.distance_metric = distance_metric
|
69 |
+
self.margin = margin
|
70 |
+
self.size_average = size_average
|
71 |
+
|
72 |
+
def forward(self, sent_embs1, sent_embs2, labels: torch.Tensor):
|
73 |
+
rep_anchor, rep_other = sent_embs1, sent_embs2
|
74 |
+
distances = self.distance_metric(rep_anchor, rep_other)
|
75 |
+
losses = 0.5 * (labels.float() * distances.pow(2) + (1 - labels).float() * F.relu(self.margin - distances).pow(2))
|
76 |
+
return losses.mean() if self.size_average else losses.sum()
|
77 |
+
|
78 |
+
|
79 |
+
|
80 |
+
class NSPHead(nn.Module):
|
81 |
+
def __init__(self, config):
|
82 |
+
super().__init__()
|
83 |
+
self.seq_relationship = nn.Linear(config.hidden_size, 2)
|
84 |
+
|
85 |
+
def forward(self, pooled_output):
|
86 |
+
seq_relationship_score = self.seq_relationship(pooled_output)
|
87 |
+
return seq_relationship_score
|
88 |
+
|
89 |
+
|
90 |
+
|
91 |
+
class RoBertaKPPLMForProcessedWikiKGPLM(RobertaForMaskedLM):
|
92 |
+
|
93 |
+
def __init__(self, config):
|
94 |
+
super().__init__(config)
|
95 |
+
self.num_labels = config.num_labels
|
96 |
+
self.config = config
|
97 |
+
# self.roberta = RobertaModel(config)
|
98 |
+
try:
|
99 |
+
classifier_dropout = (
|
100 |
+
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
101 |
+
)
|
102 |
+
except:
|
103 |
+
classifier_dropout = (config.hidden_dropout_prob)
|
104 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
105 |
+
# self.cls = BertOnlyMLMHead(config)
|
106 |
+
# self.lm_head = RobertaLMHead(config) # Masked Language Modeling head
|
107 |
+
self.detector = NSPHead(config) # Knowledge Noise Detection head
|
108 |
+
self.entity_mlp = nn.Linear(config.hidden_size, config.hidden_size)
|
109 |
+
self.relation_mlp = nn.Linear(config.hidden_size, config.hidden_size)
|
110 |
+
# self.classifiers = nn.ModuleList([nn.Linear(config.hidden_size, config.num_ner_labels) for _ in range(config.entity_type_num)])
|
111 |
+
|
112 |
+
self.contrastive_loss_fn = ContrastiveLoss()
|
113 |
+
self.post_init()
|
114 |
+
|
115 |
+
def forward(
|
116 |
+
self,
|
117 |
+
input_ids=None,
|
118 |
+
attention_mask=None,
|
119 |
+
token_type_ids=None,
|
120 |
+
position_ids=None,
|
121 |
+
head_mask=None,
|
122 |
+
inputs_embeds=None,
|
123 |
+
encoder_hidden_states=None,
|
124 |
+
encoder_attention_mask=None,
|
125 |
+
labels=None,
|
126 |
+
# entity_label=None,
|
127 |
+
entity_candidate=None,
|
128 |
+
# relation_label=None,
|
129 |
+
relation_candidate=None,
|
130 |
+
noise_detect_label=None,
|
131 |
+
task_id=None,
|
132 |
+
mask_id=None,
|
133 |
+
output_attentions=None,
|
134 |
+
output_hidden_states=None,
|
135 |
+
return_dict=None,
|
136 |
+
):
|
137 |
+
# start_time = time()
|
138 |
+
mlm_labels = labels
|
139 |
+
|
140 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
141 |
+
# print("attention_mask.shape=", attention_mask.shape)
|
142 |
+
# print("input_ids[0]=", input_ids[0])
|
143 |
+
# print("token_type_ids[0]=", token_type_ids[0])
|
144 |
+
# attention_mask = None
|
145 |
+
|
146 |
+
outputs = self.roberta(
|
147 |
+
input_ids,
|
148 |
+
attention_mask=attention_mask,
|
149 |
+
token_type_ids=token_type_ids,
|
150 |
+
position_ids=position_ids,
|
151 |
+
head_mask=head_mask,
|
152 |
+
inputs_embeds=inputs_embeds,
|
153 |
+
encoder_hidden_states=encoder_hidden_states,
|
154 |
+
encoder_attention_mask=encoder_attention_mask,
|
155 |
+
output_attentions=output_attentions,
|
156 |
+
output_hidden_states=output_hidden_states,
|
157 |
+
return_dict=return_dict,
|
158 |
+
)
|
159 |
+
|
160 |
+
sequence_output = outputs[0]
|
161 |
+
prediction_scores = self.lm_head(sequence_output) # mlm head
|
162 |
+
# noise_detect_scores = self.detector(pooled_output) # knowledge noise detector use pool output
|
163 |
+
noise_detect_scores = self.detector(sequence_output[:, 0, :]) # knowledge noise detector use cls embedding
|
164 |
+
|
165 |
+
# ner
|
166 |
+
# sequence_output = self.dropout(sequence_output)
|
167 |
+
# ner_logits = torch.stack([classifier(sequence_output) for classifier in self.classifiers]).movedim(1, 0)
|
168 |
+
|
169 |
+
# mlm
|
170 |
+
masked_lm_loss, noise_detect_loss, entity_loss, total_loss = None, None, None, None
|
171 |
+
total_loss = list()
|
172 |
+
if mlm_labels is not None:
|
173 |
+
loss_fct = CrossEntropyLoss() # -100 index = padding token
|
174 |
+
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), mlm_labels.view(-1))
|
175 |
+
total_loss.append(masked_lm_loss)
|
176 |
+
|
177 |
+
# if noise_detect_label is not None:
|
178 |
+
# noise_detect_scores = noise_detect_scores[task_id == 1]
|
179 |
+
# noise_detect_label = noise_detect_label[task_id == 1]
|
180 |
+
#
|
181 |
+
# if len(noise_detect_label) > 0:
|
182 |
+
# loss_fct = CrossEntropyLoss()
|
183 |
+
# noise_detect_loss = loss_fct(noise_detect_scores.view(-1, 2), noise_detect_label.view(-1))
|
184 |
+
# total_loss.append(noise_detect_loss)
|
185 |
+
|
186 |
+
entity_candidate = entity_candidate[task_id == 2]
|
187 |
+
if len(entity_candidate) > 0:
|
188 |
+
batch_size = entity_candidate.shape[0]
|
189 |
+
candidate_num = entity_candidate.shape[1]
|
190 |
+
# print("negative_num=", negative_num)
|
191 |
+
# 获取被mask实体的embedding
|
192 |
+
batch_entity_query_embedding = list()
|
193 |
+
for ei, input_id in enumerate(input_ids[task_id == 2]):
|
194 |
+
batch_entity_query_embedding.append(
|
195 |
+
torch.mean(sequence_output[task_id == 2][ei][input_id == mask_id[task_id == 2][ei]], 0)) # [hidden_dim]
|
196 |
+
batch_entity_query_embedding = torch.stack(batch_entity_query_embedding) # [bz, dim]
|
197 |
+
# print("batch_entity_query_embedding.shape=", batch_entity_query_embedding.shape)
|
198 |
+
batch_entity_query_embedding = self.entity_mlp(batch_entity_query_embedding) # [bz, dim]
|
199 |
+
batch_entity_query_embedding = batch_entity_query_embedding.unsqueeze(1).repeat((1, candidate_num, 1)) # [bz, 11, dim]
|
200 |
+
batch_entity_query_embedding = batch_entity_query_embedding.view(-1, batch_entity_query_embedding.shape[-1]) # [bz * 11, dim]
|
201 |
+
# print("batch_entity_query_embedding.shape=", batch_entity_query_embedding.shape)
|
202 |
+
|
203 |
+
# 获得positive和negative的BERT表示
|
204 |
+
# entity_candidiate: [bz, 11, len]
|
205 |
+
entity_candidate = entity_candidate.view(-1, entity_candidate.shape[-1]) # [bz * 11, len]
|
206 |
+
entity_candidate_embedding = self.roberta.embeddings(input_ids=entity_candidate) # [bz * 11, len, dim]
|
207 |
+
entity_candidate_embedding = self.entity_mlp(torch.mean(entity_candidate_embedding, 1)) # [bz * 11, dim]
|
208 |
+
|
209 |
+
contrastive_entity_label = torch.Tensor([0] * (candidate_num - 1) + [1]).float().cuda()
|
210 |
+
contrastive_entity_label = contrastive_entity_label.unsqueeze(0).repeat([batch_size, 1]).view(-1) # [bz * 11]
|
211 |
+
|
212 |
+
entity_loss = self.contrastive_loss_fn(
|
213 |
+
batch_entity_query_embedding, entity_candidate_embedding, contrastive_entity_label
|
214 |
+
)
|
215 |
+
total_loss.append(entity_loss)
|
216 |
+
|
217 |
+
relation_candidate = relation_candidate[task_id == 3]
|
218 |
+
if len(relation_candidate) > 0:
|
219 |
+
batch_size = relation_candidate.shape[0]
|
220 |
+
candidate_num = relation_candidate.shape[1]
|
221 |
+
# print("negative_num=", negative_num)
|
222 |
+
# 获取被mask relation的embedding
|
223 |
+
batch_relation_query_embedding = list()
|
224 |
+
for ei, input_id in enumerate(input_ids[task_id == 3]):
|
225 |
+
batch_relation_query_embedding.append(
|
226 |
+
torch.mean(sequence_output[task_id == 3][ei][input_id == mask_id[task_id == 3][ei]], 0)) # [hidden_dim]
|
227 |
+
batch_relation_query_embedding = torch.stack(batch_relation_query_embedding) # [bz, dim]
|
228 |
+
# print("batch_relation_query_embedding.shape=", batch_relation_query_embedding.shape)
|
229 |
+
batch_relation_query_embedding = self.relation_mlp(batch_relation_query_embedding) # [bz, dim]
|
230 |
+
batch_relation_query_embedding = batch_relation_query_embedding.unsqueeze(1).repeat(
|
231 |
+
(1, candidate_num, 1)) # [bz, 11, dim]
|
232 |
+
batch_relation_query_embedding = batch_relation_query_embedding.view(-1, batch_relation_query_embedding.shape[-1]) # [bz * 11, dim]
|
233 |
+
# print("batch_relation_query_embedding.shape=", batch_relation_query_embedding.shape)
|
234 |
+
|
235 |
+
# 获得positive和negative的BERT表示
|
236 |
+
# entity_candidiate: [bz, 11, len]
|
237 |
+
relation_candidate = relation_candidate.view(-1, relation_candidate.shape[-1]) # [bz * 11, len]
|
238 |
+
relation_candidate_embedding = self.roberta.embeddings(input_ids=relation_candidate) # [bz * 11, len, dim]
|
239 |
+
relation_candidate_embedding = self.relation_mlp(torch.mean(relation_candidate_embedding, 1)) # [bz * 11, dim]
|
240 |
+
|
241 |
+
contrastive_relation_label = torch.Tensor([0] * (candidate_num - 1) + [1]).float().cuda()
|
242 |
+
contrastive_relation_label = contrastive_relation_label.unsqueeze(0).repeat([batch_size, 1]).view(-1) # [bz * 11]
|
243 |
+
|
244 |
+
relation_loss = self.contrastive_loss_fn(
|
245 |
+
batch_relation_query_embedding, relation_candidate_embedding, contrastive_relation_label
|
246 |
+
)
|
247 |
+
total_loss.append(relation_loss)
|
248 |
+
|
249 |
+
total_loss = torch.sum(torch.stack(total_loss), -1)
|
250 |
+
|
251 |
+
# end_time = time()
|
252 |
+
# print("neural_mode_time: {}".format(end_time - start_time))
|
253 |
+
# print("masked_lm_loss.unsqueeze(0)=", masked_lm_loss.unsqueeze(0))
|
254 |
+
# print("masked_lm_loss.unsqueeze(0).shape=", masked_lm_loss.unsqueeze(0).shape)
|
255 |
+
# print("logits=", prediction_scores.argmax(2))
|
256 |
+
# print("logits.shape=", prediction_scores.argmax(2).shape)
|
257 |
+
|
258 |
+
|
259 |
+
return OrderedDict([
|
260 |
+
("loss", total_loss),
|
261 |
+
("mlm_loss", masked_lm_loss.unsqueeze(0)),
|
262 |
+
# ("noise_detect_loss", noise_detect_loss.unsqueeze(0) if noise_detect_loss is not None else None),
|
263 |
+
# ("entity_loss", entity_loss.unsqueeze(0) if entity_loss is not None else None),
|
264 |
+
# ("relation_loss", relation_loss.unsqueeze(0) if relation_loss is not None else None),
|
265 |
+
("logits", prediction_scores.argmax(2)),
|
266 |
+
# ("noise_detect_logits", noise_detect_scores.argmax(-1) if noise_detect_scores is not None and len(noise_detect_scores) > 0 else None),
|
267 |
+
])
|
268 |
+
|
269 |
+
|
270 |
+
class DeBertaKPPLMForProcessedWikiKGPLM(DebertaForMaskedLM):
|
271 |
+
|
272 |
+
def __init__(self, config):
|
273 |
+
super().__init__(config)
|
274 |
+
self.num_labels = config.num_labels
|
275 |
+
self.config = config
|
276 |
+
# self.roberta = RobertaModel(config)
|
277 |
+
try:
|
278 |
+
classifier_dropout = (
|
279 |
+
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
280 |
+
)
|
281 |
+
except:
|
282 |
+
classifier_dropout = (config.hidden_dropout_prob)
|
283 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
284 |
+
# self.cls = BertOnlyMLMHead(config)
|
285 |
+
# self.lm_head = RobertaLMHead(config) # Masked Language Modeling head
|
286 |
+
self.detector = NSPHead(config) # Knowledge Noise Detection head
|
287 |
+
self.entity_mlp = nn.Linear(config.hidden_size, config.hidden_size)
|
288 |
+
self.relation_mlp = nn.Linear(config.hidden_size, config.hidden_size)
|
289 |
+
# self.classifiers = nn.ModuleList([nn.Linear(config.hidden_size, config.num_ner_labels) for _ in range(config.entity_type_num)])
|
290 |
+
|
291 |
+
self.contrastive_loss_fn = ContrastiveLoss()
|
292 |
+
self.post_init()
|
293 |
+
|
294 |
+
def forward(
|
295 |
+
self,
|
296 |
+
input_ids=None,
|
297 |
+
attention_mask=None,
|
298 |
+
token_type_ids=None,
|
299 |
+
position_ids=None,
|
300 |
+
head_mask=None,
|
301 |
+
inputs_embeds=None,
|
302 |
+
encoder_hidden_states=None,
|
303 |
+
encoder_attention_mask=None,
|
304 |
+
labels=None,
|
305 |
+
# entity_label=None,
|
306 |
+
entity_candidate=None,
|
307 |
+
# relation_label=None,
|
308 |
+
relation_candidate=None,
|
309 |
+
noise_detect_label=None,
|
310 |
+
task_id=None,
|
311 |
+
mask_id=None,
|
312 |
+
output_attentions=None,
|
313 |
+
output_hidden_states=None,
|
314 |
+
return_dict=None,
|
315 |
+
):
|
316 |
+
# start_time = time()
|
317 |
+
mlm_labels = labels
|
318 |
+
|
319 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
320 |
+
# print("attention_mask.shape=", attention_mask.shape)
|
321 |
+
# print("input_ids[0]=", input_ids[0])
|
322 |
+
# print("token_type_ids[0]=", token_type_ids[0])
|
323 |
+
# attention_mask = None
|
324 |
+
|
325 |
+
outputs = self.deberta(
|
326 |
+
input_ids,
|
327 |
+
# attention_mask=attention_mask,
|
328 |
+
attention_mask=None,
|
329 |
+
token_type_ids=token_type_ids,
|
330 |
+
position_ids=position_ids,
|
331 |
+
inputs_embeds=inputs_embeds,
|
332 |
+
output_attentions=output_attentions,
|
333 |
+
output_hidden_states=output_hidden_states,
|
334 |
+
return_dict=return_dict,
|
335 |
+
)
|
336 |
+
|
337 |
+
sequence_output = outputs[0]
|
338 |
+
prediction_scores = self.cls(sequence_output) # mlm head
|
339 |
+
# noise_detect_scores = self.detector(pooled_output) # knowledge noise detector use pool output
|
340 |
+
noise_detect_scores = self.detector(sequence_output[:, 0, :]) # knowledge noise detector use cls embedding
|
341 |
+
|
342 |
+
# ner
|
343 |
+
# sequence_output = self.dropout(sequence_output)
|
344 |
+
# ner_logits = torch.stack([classifier(sequence_output) for classifier in self.classifiers]).movedim(1, 0)
|
345 |
+
|
346 |
+
# mlm
|
347 |
+
masked_lm_loss, noise_detect_loss, entity_loss, total_loss = None, None, None, None
|
348 |
+
total_loss = list()
|
349 |
+
if mlm_labels is not None:
|
350 |
+
loss_fct = CrossEntropyLoss() # -100 index = padding token
|
351 |
+
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), mlm_labels.view(-1))
|
352 |
+
total_loss.append(masked_lm_loss)
|
353 |
+
|
354 |
+
# if noise_detect_label is not None:
|
355 |
+
# noise_detect_scores = noise_detect_scores[task_id == 1]
|
356 |
+
# noise_detect_label = noise_detect_label[task_id == 1]
|
357 |
+
#
|
358 |
+
# if len(noise_detect_label) > 0:
|
359 |
+
# loss_fct = CrossEntropyLoss()
|
360 |
+
# noise_detect_loss = loss_fct(noise_detect_scores.view(-1, 2), noise_detect_label.view(-1))
|
361 |
+
# total_loss.append(noise_detect_loss)
|
362 |
+
|
363 |
+
entity_candidate = entity_candidate[task_id == 2]
|
364 |
+
if len(entity_candidate) > 0:
|
365 |
+
batch_size = entity_candidate.shape[0]
|
366 |
+
candidate_num = entity_candidate.shape[1]
|
367 |
+
# print("negative_num=", negative_num)
|
368 |
+
# 获取被mask实体的embedding
|
369 |
+
batch_entity_query_embedding = list()
|
370 |
+
for ei, input_id in enumerate(input_ids[task_id == 2]):
|
371 |
+
batch_entity_query_embedding.append(
|
372 |
+
torch.mean(sequence_output[task_id == 2][ei][input_id == mask_id[task_id == 2][ei]], 0)) # [hidden_dim]
|
373 |
+
batch_entity_query_embedding = torch.stack(batch_entity_query_embedding) # [bz, dim]
|
374 |
+
# print("batch_entity_query_embedding.shape=", batch_entity_query_embedding.shape)
|
375 |
+
batch_entity_query_embedding = self.entity_mlp(batch_entity_query_embedding) # [bz, dim]
|
376 |
+
batch_entity_query_embedding = batch_entity_query_embedding.unsqueeze(1).repeat((1, candidate_num, 1)) # [bz, 11, dim]
|
377 |
+
batch_entity_query_embedding = batch_entity_query_embedding.view(-1, batch_entity_query_embedding.shape[-1]) # [bz * 11, dim]
|
378 |
+
# print("batch_entity_query_embedding.shape=", batch_entity_query_embedding.shape)
|
379 |
+
|
380 |
+
# 获得positive和negative的BERT表示
|
381 |
+
# entity_candidiate: [bz, 11, len]
|
382 |
+
entity_candidate = entity_candidate.view(-1, entity_candidate.shape[-1]) # [bz * 11, len]
|
383 |
+
entity_candidate_embedding = self.deberta.embeddings(input_ids=entity_candidate) # [bz * 11, len, dim]
|
384 |
+
entity_candidate_embedding = self.entity_mlp(torch.mean(entity_candidate_embedding, 1)) # [bz * 11, dim]
|
385 |
+
|
386 |
+
contrastive_entity_label = torch.Tensor([0] * (candidate_num - 1) + [1]).float().cuda()
|
387 |
+
contrastive_entity_label = contrastive_entity_label.unsqueeze(0).repeat([batch_size, 1]).view(-1) # [bz * 11]
|
388 |
+
|
389 |
+
entity_loss = self.contrastive_loss_fn(
|
390 |
+
batch_entity_query_embedding, entity_candidate_embedding, contrastive_entity_label
|
391 |
+
)
|
392 |
+
total_loss.append(entity_loss)
|
393 |
+
|
394 |
+
relation_candidate = relation_candidate[task_id == 3]
|
395 |
+
if len(relation_candidate) > 0:
|
396 |
+
batch_size = relation_candidate.shape[0]
|
397 |
+
candidate_num = relation_candidate.shape[1]
|
398 |
+
# print("negative_num=", negative_num)
|
399 |
+
# 获取被mask relation的embedding
|
400 |
+
batch_relation_query_embedding = list()
|
401 |
+
for ei, input_id in enumerate(input_ids[task_id == 3]):
|
402 |
+
batch_relation_query_embedding.append(
|
403 |
+
torch.mean(sequence_output[task_id == 3][ei][input_id == mask_id[task_id == 3][ei]], 0)) # [hidden_dim]
|
404 |
+
batch_relation_query_embedding = torch.stack(batch_relation_query_embedding) # [bz, dim]
|
405 |
+
# print("batch_relation_query_embedding.shape=", batch_relation_query_embedding.shape)
|
406 |
+
batch_relation_query_embedding = self.relation_mlp(batch_relation_query_embedding) # [bz, dim]
|
407 |
+
batch_relation_query_embedding = batch_relation_query_embedding.unsqueeze(1).repeat(
|
408 |
+
(1, candidate_num, 1)) # [bz, 11, dim]
|
409 |
+
batch_relation_query_embedding = batch_relation_query_embedding.view(-1, batch_relation_query_embedding.shape[-1]) # [bz * 11, dim]
|
410 |
+
# print("batch_relation_query_embedding.shape=", batch_relation_query_embedding.shape)
|
411 |
+
|
412 |
+
# 获得positive和negative的BERT表示
|
413 |
+
# entity_candidiate: [bz, 11, len]
|
414 |
+
relation_candidate = relation_candidate.view(-1, relation_candidate.shape[-1]) # [bz * 11, len]
|
415 |
+
relation_candidate_embedding = self.deberta.embeddings(input_ids=relation_candidate) # [bz * 11, len, dim]
|
416 |
+
relation_candidate_embedding = self.relation_mlp(torch.mean(relation_candidate_embedding, 1)) # [bz * 11, dim]
|
417 |
+
|
418 |
+
contrastive_relation_label = torch.Tensor([0] * (candidate_num - 1) + [1]).float().cuda()
|
419 |
+
contrastive_relation_label = contrastive_relation_label.unsqueeze(0).repeat([batch_size, 1]).view(-1) # [bz * 11]
|
420 |
+
|
421 |
+
relation_loss = self.contrastive_loss_fn(
|
422 |
+
batch_relation_query_embedding, relation_candidate_embedding, contrastive_relation_label
|
423 |
+
)
|
424 |
+
total_loss.append(relation_loss)
|
425 |
+
|
426 |
+
total_loss = torch.sum(torch.stack(total_loss), -1)
|
427 |
+
|
428 |
+
# end_time = time()
|
429 |
+
# print("neural_mode_time: {}".format(end_time - start_time))
|
430 |
+
# print("masked_lm_loss.unsqueeze(0)=", masked_lm_loss.unsqueeze(0))
|
431 |
+
# print("masked_lm_loss.unsqueeze(0).shape=", masked_lm_loss.unsqueeze(0).shape)
|
432 |
+
# print("logits=", prediction_scores.argmax(2))
|
433 |
+
# print("logits.shape=", prediction_scores.argmax(2).shape)
|
434 |
+
|
435 |
+
|
436 |
+
return OrderedDict([
|
437 |
+
("loss", total_loss),
|
438 |
+
("mlm_loss", masked_lm_loss.unsqueeze(0)),
|
439 |
+
# ("noise_detect_loss", noise_detect_loss.unsqueeze(0) if noise_detect_loss is not None else None),
|
440 |
+
# ("entity_loss", entity_loss.unsqueeze(0) if entity_loss is not None else None),
|
441 |
+
# ("relation_loss", relation_loss.unsqueeze(0) if relation_loss is not None else None),
|
442 |
+
("logits", prediction_scores.argmax(2)),
|
443 |
+
# ("noise_detect_logits", noise_detect_scores.argmax(-1) if noise_detect_scores is not None and len(noise_detect_scores) > 0 else None),
|
444 |
+
])
|
445 |
+
|
446 |
+
|
447 |
+
class RoBertaForWikiKGPLM(RobertaPreTrainedModel):
|
448 |
+
|
449 |
+
def __init__(self, config):
|
450 |
+
super().__init__(config)
|
451 |
+
self.num_labels = config.num_labels
|
452 |
+
self.config = config
|
453 |
+
self.roberta = RobertaModel(config)
|
454 |
+
classifier_dropout = (
|
455 |
+
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
456 |
+
)
|
457 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
458 |
+
# self.cls = BertOnlyMLMHead(config)
|
459 |
+
self.lm_head = RobertaLMHead(config) # Masked Language Modeling head
|
460 |
+
self.detector = NSPHead(config) # Knowledge Noise Detection head
|
461 |
+
self.entity_mlp = nn.Linear(config.hidden_size, config.hidden_size)
|
462 |
+
self.relation_mlp = nn.Linear(config.hidden_size, config.hidden_size)
|
463 |
+
# self.classifiers = nn.ModuleList([nn.Linear(config.hidden_size, config.num_ner_labels) for _ in range(config.entity_type_num)])
|
464 |
+
|
465 |
+
self.contrastive_loss_fn = ContrastiveLoss()
|
466 |
+
self.post_init()
|
467 |
+
|
468 |
+
self.tokenizer = RobertaTokenizer.from_pretrained(config.name_or_path)
|
469 |
+
|
470 |
+
def forward(
|
471 |
+
self,
|
472 |
+
input_ids=None,
|
473 |
+
attention_mask=None,
|
474 |
+
token_type_ids=None,
|
475 |
+
position_ids=None,
|
476 |
+
head_mask=None,
|
477 |
+
inputs_embeds=None,
|
478 |
+
encoder_hidden_states=None,
|
479 |
+
encoder_attention_mask=None,
|
480 |
+
mlm_labels=None,
|
481 |
+
entity_label=None,
|
482 |
+
entity_negative=None,
|
483 |
+
relation_label=None,
|
484 |
+
relation_negative=None,
|
485 |
+
noise_detect_label=None,
|
486 |
+
task_id=None,
|
487 |
+
mask_id=None,
|
488 |
+
output_attentions=None,
|
489 |
+
output_hidden_states=None,
|
490 |
+
return_dict=None,
|
491 |
+
):
|
492 |
+
# start_time = time()
|
493 |
+
|
494 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
495 |
+
# print("attention_mask.shape=", attention_mask.shape)
|
496 |
+
# print("input_ids[0]=", input_ids[0])
|
497 |
+
# print("token_type_ids[0]=", token_type_ids[0])
|
498 |
+
# attention_mask = None
|
499 |
+
|
500 |
+
|
501 |
+
outputs = self.roberta(
|
502 |
+
input_ids,
|
503 |
+
attention_mask=attention_mask,
|
504 |
+
token_type_ids=token_type_ids,
|
505 |
+
position_ids=position_ids,
|
506 |
+
head_mask=head_mask,
|
507 |
+
inputs_embeds=inputs_embeds,
|
508 |
+
encoder_hidden_states=encoder_hidden_states,
|
509 |
+
encoder_attention_mask=encoder_attention_mask,
|
510 |
+
output_attentions=output_attentions,
|
511 |
+
output_hidden_states=output_hidden_states,
|
512 |
+
return_dict=return_dict,
|
513 |
+
)
|
514 |
+
|
515 |
+
sequence_output, pooled_output = outputs[:2]
|
516 |
+
prediction_scores = self.lm_head(sequence_output) # mlm head
|
517 |
+
noise_detect_scores = self.detector(pooled_output) # knowledge noise detector
|
518 |
+
|
519 |
+
|
520 |
+
# ner
|
521 |
+
# sequence_output = self.dropout(sequence_output)
|
522 |
+
# ner_logits = torch.stack([classifier(sequence_output) for classifier in self.classifiers]).movedim(1, 0)
|
523 |
+
|
524 |
+
# mlm
|
525 |
+
masked_lm_loss, noise_detect_loss, entity_loss, total_loss = None, None, None, None
|
526 |
+
if mlm_labels is not None:
|
527 |
+
loss_fct = CrossEntropyLoss() # -100 index = padding token
|
528 |
+
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), mlm_labels.view(-1))
|
529 |
+
|
530 |
+
if noise_detect_label is not None:
|
531 |
+
loss_fct = CrossEntropyLoss()
|
532 |
+
noise_detect_loss = loss_fct(noise_detect_scores.view(-1, 2), noise_detect_label.view(-1))
|
533 |
+
total_loss = masked_lm_loss + noise_detect_loss
|
534 |
+
|
535 |
+
if entity_label is not None and entity_negative is not None:
|
536 |
+
batch_size = input_ids.shape[0]
|
537 |
+
negative_num = entity_negative.shape[1]
|
538 |
+
# print("negative_num=", negative_num)
|
539 |
+
# 获取被mask实体的embedding
|
540 |
+
batch_query_embedding = list()
|
541 |
+
for ei, input_id in enumerate(input_ids):
|
542 |
+
batch_query_embedding.append(torch.mean(sequence_output[ei][input_id == mask_id[ei]], 0)) # [hidden_dim]
|
543 |
+
batch_query_embedding = torch.stack(batch_query_embedding) # [bz, dim]
|
544 |
+
# print("batch_query_embedding.shape=", batch_query_embedding.shape)
|
545 |
+
batch_query_embedding = self.entity_mlp(batch_query_embedding) # [bz, dim]
|
546 |
+
batch_query_embedding = batch_query_embedding.unsqueeze(1).repeat((1, negative_num + 1, 1)) # [bz, 11, dim]
|
547 |
+
batch_query_embedding = batch_query_embedding.view(-1, batch_query_embedding.shape[-1]) # [bz * 11, dim]
|
548 |
+
# print("batch_query_embedding.shape=", batch_query_embedding.shape)
|
549 |
+
|
550 |
+
# 获得positive和negative的BERT表示
|
551 |
+
# entity_label: [bz, len], entity_negative: [bz, 10, len]
|
552 |
+
entity_negative = entity_negative.view(-1, entity_negative.shape[-1]) # [bz * 10, len]
|
553 |
+
entity_label_embedding = self.roberta.embeddings(input_ids=entity_label) # [bz, len, dim]
|
554 |
+
entity_label_embedding = self.entity_mlp(torch.mean(entity_label_embedding, 1)) # [bz, dim]
|
555 |
+
entity_label_embedding = entity_label_embedding.unsqueeze(1) # [bz, 1, dim]
|
556 |
+
|
557 |
+
entity_negative_embedding = self.roberta.embeddings(input_ids=entity_negative) # [bz * 10, len, dim]
|
558 |
+
entity_negative_embedding = self.entity_mlp(torch.mean(entity_negative_embedding, 1)) # [bz * 10, dim]
|
559 |
+
entity_negative_embedding = entity_negative_embedding \
|
560 |
+
.view(input_ids.shape[0], -1, entity_negative_embedding.shape[-1]) # [bz, 10, dim]
|
561 |
+
|
562 |
+
contrastive_label = torch.Tensor([0] * negative_num + [1]).float().cuda()
|
563 |
+
contrastive_label = contrastive_label.unsqueeze(0).repeat([batch_size, 1]).view(-1) # [bz * 11]
|
564 |
+
# print("entity_negative_embedding.shape=", entity_negative_embedding.shape)
|
565 |
+
# print("entity_label_embedding.shape=", entity_label_embedding.shape)
|
566 |
+
candidate_embedding = torch.cat([entity_negative_embedding, entity_label_embedding], 1) # [bz, 11, dim]
|
567 |
+
candidate_embedding = candidate_embedding.view(-1, candidate_embedding.shape[-1]) # [bz * 11, dim]
|
568 |
+
# print("candidate_embedding.shape=", candidate_embedding.shape)
|
569 |
+
|
570 |
+
entity_loss = self.contrastive_loss_fn(batch_query_embedding, candidate_embedding, contrastive_label)
|
571 |
+
total_loss = masked_lm_loss + entity_loss
|
572 |
+
|
573 |
+
|
574 |
+
# if ner_labels is not None:
|
575 |
+
# loss_fct = CrossEntropyLoss()
|
576 |
+
# # Only keep active parts of the loss
|
577 |
+
#
|
578 |
+
# active_loss = attention_mask.repeat(self.config.entity_type_num, 1, 1).view(-1) == 1
|
579 |
+
# active_logits = ner_logits.reshape(-1, self.config.num_ner_labels)
|
580 |
+
# active_labels = torch.where(
|
581 |
+
# active_loss, ner_labels.view(-1), torch.tensor(loss_fct.ignore_index).type_as(ner_labels)
|
582 |
+
# )
|
583 |
+
# ner_loss = loss_fct(active_logits, active_labels)
|
584 |
+
#
|
585 |
+
# if masked_lm_loss:
|
586 |
+
# total_loss = masked_lm_loss + ner_loss * 4
|
587 |
+
# print("total_loss=", total_loss)
|
588 |
+
# print("mlm_loss=", masked_lm_loss)
|
589 |
+
|
590 |
+
|
591 |
+
# end_time = time()
|
592 |
+
# print("neural_mode_time: {}".format(end_time - start_time))
|
593 |
+
|
594 |
+
return OrderedDict([
|
595 |
+
("loss", total_loss),
|
596 |
+
("mlm_loss", masked_lm_loss.unsqueeze(0)),
|
597 |
+
("noise_detect_loss", noise_detect_loss.unsqueeze(0) if noise_detect_loss is not None else None),
|
598 |
+
("entity_loss", entity_loss.unsqueeze(0) if entity_label is not None else None),
|
599 |
+
("logits", prediction_scores.argmax(2)),
|
600 |
+
("noise_detect_logits", noise_detect_scores.argmax(-1) if noise_detect_scores is not None else None),
|
601 |
+
])
|
602 |
+
# MaskedLMOutput(
|
603 |
+
# loss=total_loss,
|
604 |
+
# logits=prediction_scores.argmax(2),
|
605 |
+
# ner_l
|
606 |
+
# hidden_states=outputs.hidden_states,
|
607 |
+
# attentions=outputs.attentions,
|
608 |
+
# )
|
609 |
+
|
610 |
+
|
611 |
+
|
612 |
+
|
613 |
+
class BertForWikiKGPLM(BertPreTrainedModel):
|
614 |
+
|
615 |
+
def __init__(self, config):
|
616 |
+
super().__init__(config)
|
617 |
+
self.num_labels = config.num_labels
|
618 |
+
self.config = config
|
619 |
+
self.bert = BertModel(config)
|
620 |
+
classifier_dropout = (
|
621 |
+
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
622 |
+
)
|
623 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
624 |
+
# self.cls = BertOnlyMLMHead(config)
|
625 |
+
self.cls = BertPreTrainedModel(config)
|
626 |
+
self.entity_mlp = nn.Linear(config.hidden_size, config.hidden_size)
|
627 |
+
self.relation_mlp = nn.Linear(config.hidden_size, config.hidden_size)
|
628 |
+
# self.classifiers = nn.ModuleList([nn.Linear(config.hidden_size, config.num_ner_labels) for _ in range(config.entity_type_num)])
|
629 |
+
|
630 |
+
self.contrastive_loss_fn = ContrastiveLoss()
|
631 |
+
self.post_init()
|
632 |
+
|
633 |
+
def forward(
|
634 |
+
self,
|
635 |
+
input_ids=None,
|
636 |
+
attention_mask=None,
|
637 |
+
token_type_ids=None,
|
638 |
+
position_ids=None,
|
639 |
+
head_mask=None,
|
640 |
+
inputs_embeds=None,
|
641 |
+
encoder_hidden_states=None,
|
642 |
+
encoder_attention_mask=None,
|
643 |
+
mlm_labels=None,
|
644 |
+
entity_label=None,
|
645 |
+
entity_negative=None,
|
646 |
+
relation_label=None,
|
647 |
+
relation_negative=None,
|
648 |
+
noise_detect_label=None,
|
649 |
+
task_id=None,
|
650 |
+
mask_id=None,
|
651 |
+
output_attentions=None,
|
652 |
+
output_hidden_states=None,
|
653 |
+
return_dict=None,
|
654 |
+
):
|
655 |
+
|
656 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
657 |
+
print("attention_mask.shape=", attention_mask.shape)
|
658 |
+
print("input_ids[0]=", input_ids[0])
|
659 |
+
print("token_type_ids[0]=", token_type_ids[0])
|
660 |
+
attention_mask = None
|
661 |
+
outputs = self.bert(
|
662 |
+
input_ids,
|
663 |
+
attention_mask=attention_mask,
|
664 |
+
token_type_ids=token_type_ids,
|
665 |
+
position_ids=position_ids,
|
666 |
+
head_mask=head_mask,
|
667 |
+
inputs_embeds=inputs_embeds,
|
668 |
+
encoder_hidden_states=encoder_hidden_states,
|
669 |
+
encoder_attention_mask=encoder_attention_mask,
|
670 |
+
output_attentions=output_attentions,
|
671 |
+
output_hidden_states=output_hidden_states,
|
672 |
+
return_dict=return_dict,
|
673 |
+
)
|
674 |
+
|
675 |
+
sequence_output, pooled_output = outputs[:2]
|
676 |
+
prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output)
|
677 |
+
|
678 |
+
# ner
|
679 |
+
# sequence_output = self.dropout(sequence_output)
|
680 |
+
# ner_logits = torch.stack([classifier(sequence_output) for classifier in self.classifiers]).movedim(1, 0)
|
681 |
+
|
682 |
+
# mlm
|
683 |
+
masked_lm_loss, noise_detect_loss, entity_loss, total_loss = None, None, None, None
|
684 |
+
|
685 |
+
if mlm_labels is not None:
|
686 |
+
loss_fct = CrossEntropyLoss() # -100 index = padding token
|
687 |
+
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), mlm_labels.view(-1))
|
688 |
+
|
689 |
+
if noise_detect_label is not None:
|
690 |
+
loss_fct = CrossEntropyLoss()
|
691 |
+
noise_detect_loss = loss_fct(seq_relationship_score.view(-1, 2), noise_detect_label.view(-1))
|
692 |
+
total_loss = masked_lm_loss + noise_detect_loss
|
693 |
+
|
694 |
+
if entity_label is not None and entity_negative is not None:
|
695 |
+
negative_num = entity_negative.shape[1]
|
696 |
+
# 获取被mask实体的embedding
|
697 |
+
batch_query_embedding = list()
|
698 |
+
for ei, input_id in enumerate(input_ids):
|
699 |
+
batch_query_embedding.append(torch.mean(sequence_output[ei][input_id == mask_id[ei]], 0)) # [hidden_dim]
|
700 |
+
batch_query_embedding = torch.stack(batch_query_embedding) # [bz, dim]
|
701 |
+
batch_query_embedding = self.entity_mlp(batch_query_embedding) # [bz, dim]
|
702 |
+
batch_query_embedding = batch_query_embedding.repeat((1, negative_num + 1, 1)) # [bz, 11, dim]
|
703 |
+
|
704 |
+
# 获得positive和negative的BERT表示
|
705 |
+
# entity_label: [bz, len], entity_negative: [bz, 10, len]
|
706 |
+
entity_negative = entity_negative.view(-1, entity_negative.shape[-1]) # [bz * 10, len]
|
707 |
+
entity_label_embedding = self.bert.embeddings(input_id=entity_label) # [bz, len, dim]
|
708 |
+
entity_label_embedding = self.entity_mlp(torch.mean(entity_label_embedding, 1)) # [bz, dim]
|
709 |
+
entity_label_embedding = entity_label_embedding.unsqueeze(1) # [bz, 1, dim]
|
710 |
+
|
711 |
+
entity_negative_embedding = self.bert.embeddings(input_id=entity_negative) # [bz * 10, len, dim]
|
712 |
+
entity_negative_embedding = self.entity_mlp(torch.mean(entity_negative_embedding, 1)) # [bz * 10, dim]
|
713 |
+
entity_negative_embedding = entity_negative_embedding \
|
714 |
+
.view(input_ids.shape[0], -1, entity_negative_embedding.shape[-1]) # [bz, 10, dim]
|
715 |
+
|
716 |
+
contrastive_label = torch.Tensor([0] * negative_num + [1]).float().cuda()
|
717 |
+
candidate_embedding = torch.cat([entity_negative_embedding, entity_label_embedding], 1) # [bz, 11, dim]
|
718 |
+
|
719 |
+
entity_loss = self.contrastive_loss_fn(batch_query_embedding, candidate_embedding, contrastive_label)
|
720 |
+
total_loss = masked_lm_loss + entity_loss
|
721 |
+
|
722 |
+
|
723 |
+
# if ner_labels is not None:
|
724 |
+
# loss_fct = CrossEntropyLoss()
|
725 |
+
# # Only keep active parts of the loss
|
726 |
+
#
|
727 |
+
# active_loss = attention_mask.repeat(self.config.entity_type_num, 1, 1).view(-1) == 1
|
728 |
+
# active_logits = ner_logits.reshape(-1, self.config.num_ner_labels)
|
729 |
+
# active_labels = torch.where(
|
730 |
+
# active_loss, ner_labels.view(-1), torch.tensor(loss_fct.ignore_index).type_as(ner_labels)
|
731 |
+
# )
|
732 |
+
# ner_loss = loss_fct(active_logits, active_labels)
|
733 |
+
#
|
734 |
+
# if masked_lm_loss:
|
735 |
+
# total_loss = masked_lm_loss + ner_loss * 4
|
736 |
+
|
737 |
+
return OrderedDict([
|
738 |
+
("loss", total_loss),
|
739 |
+
("mlm_loss", masked_lm_loss.unsqueeze(0)),
|
740 |
+
("noise_detect_loss", noise_detect_loss.unsqueeze(0)),
|
741 |
+
("entity_loss", entity_loss.unsqueeze(0)),
|
742 |
+
("logits", prediction_scores.argmax(2)),
|
743 |
+
("noise_detect_logits", seq_relationship_score.argmax(3)),
|
744 |
+
()
|
745 |
+
])
|
746 |
+
# MaskedLMOutput(
|
747 |
+
# loss=total_loss,
|
748 |
+
# logits=prediction_scores.argmax(2),
|
749 |
+
# ner_l
|
750 |
+
# hidden_states=outputs.hidden_states,
|
751 |
+
# attentions=outputs.attentions,
|
752 |
+
# )
|
models/language_modeling/mlm.py
ADDED
@@ -0,0 +1,359 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# @Time : 2021/12/30 8:35 下午
|
3 |
+
# @Author : JianingWang
|
4 |
+
# @File : mlm.py
|
5 |
+
import logging
|
6 |
+
from typing import Union, Tuple, Optional
|
7 |
+
import torch
|
8 |
+
from torch.nn import CrossEntropyLoss
|
9 |
+
from transformers.modeling_outputs import MaskedLMOutput
|
10 |
+
from transformers.models.bert import BertPreTrainedModel
|
11 |
+
from transformers.models.bert.modeling_bert import BertPreTrainedModel, BertModel, BertOnlyMLMHead
|
12 |
+
from transformers.models.roberta.modeling_roberta import RobertaPreTrainedModel, RobertaModel, RobertaLMHead
|
13 |
+
from transformers.models.albert.modeling_albert import AlbertPreTrainedModel, AlbertModel, AlbertMLMHead
|
14 |
+
from transformers.models.roformer.modeling_roformer import RoFormerPreTrainedModel, RoFormerModel, RoFormerOnlyMLMHead
|
15 |
+
|
16 |
+
logger = logging.getLogger(__name__)
|
17 |
+
|
18 |
+
"""
|
19 |
+
Function: Use MLM to pre-train BERT
|
20 |
+
Notes:
|
21 |
+
- The label of non-masked token is -100, which can be used for cross-entropy function (only calculate loss at not -100)
|
22 |
+
"""
|
23 |
+
class BertForMaskedLM(BertPreTrainedModel):
|
24 |
+
|
25 |
+
def __init__(self, config, *inputs, **kwargs):
|
26 |
+
super().__init__(config, *inputs, **kwargs)
|
27 |
+
|
28 |
+
self.bert = BertModel(config, add_pooling_layer=False)
|
29 |
+
self.cls = BertOnlyMLMHead(config)
|
30 |
+
|
31 |
+
# Initialize weights and apply final processing
|
32 |
+
self.post_init()
|
33 |
+
|
34 |
+
def forward(
|
35 |
+
self,
|
36 |
+
input_ids: Optional[torch.Tensor] = None,
|
37 |
+
attention_mask: Optional[torch.Tensor] = None,
|
38 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
39 |
+
position_ids: Optional[torch.Tensor] = None,
|
40 |
+
head_mask: Optional[torch.Tensor] = None,
|
41 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
42 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
43 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
44 |
+
labels: Optional[torch.Tensor] = None,
|
45 |
+
output_attentions: Optional[bool] = None,
|
46 |
+
output_hidden_states: Optional[bool] = None,
|
47 |
+
return_dict: Optional[bool] = None,
|
48 |
+
) -> Union[Tuple[torch.Tensor], MaskedLMOutput]:
|
49 |
+
r"""
|
50 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
51 |
+
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
|
52 |
+
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
|
53 |
+
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
|
54 |
+
kwargs (`Dict[str, any]`, optional, defaults to *{}*):
|
55 |
+
Used to hide legacy arguments that have been deprecated.
|
56 |
+
"""
|
57 |
+
|
58 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
59 |
+
outputs = self.bert(
|
60 |
+
input_ids,
|
61 |
+
attention_mask=attention_mask,
|
62 |
+
token_type_ids=token_type_ids,
|
63 |
+
position_ids=position_ids,
|
64 |
+
head_mask=head_mask,
|
65 |
+
inputs_embeds=inputs_embeds,
|
66 |
+
encoder_hidden_states=encoder_hidden_states,
|
67 |
+
encoder_attention_mask=encoder_attention_mask,
|
68 |
+
output_attentions=output_attentions,
|
69 |
+
output_hidden_states=output_hidden_states,
|
70 |
+
return_dict=return_dict,
|
71 |
+
)
|
72 |
+
|
73 |
+
sequence_output = outputs[0]
|
74 |
+
prediction_scores = self.cls(sequence_output)
|
75 |
+
|
76 |
+
masked_lm_loss = None
|
77 |
+
if labels is not None:
|
78 |
+
loss_fct = CrossEntropyLoss() # -100 index = padding token
|
79 |
+
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
|
80 |
+
|
81 |
+
if not return_dict:
|
82 |
+
output = (prediction_scores,) + outputs[2:]
|
83 |
+
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
|
84 |
+
|
85 |
+
return MaskedLMOutput(
|
86 |
+
loss=masked_lm_loss, # ()
|
87 |
+
logits=prediction_scores, # (batch_size, seq_len, vocab_size)
|
88 |
+
hidden_states=outputs.hidden_states, # (batch_size, seq_len, hidden_size)
|
89 |
+
attentions=outputs.attentions,
|
90 |
+
)
|
91 |
+
|
92 |
+
"""
|
93 |
+
Function: Use MLM to pre-train RoBERTa
|
94 |
+
Notes:
|
95 |
+
- The label of non-masked token is -100, which can be used for cross-entropy function (only calculate loss at not -100)
|
96 |
+
"""
|
97 |
+
class RobertaForMaskedLM(RobertaPreTrainedModel):
|
98 |
+
|
99 |
+
def __init__(self, config, *inputs, **kwargs):
|
100 |
+
super().__init__(config, *inputs, **kwargs)
|
101 |
+
|
102 |
+
self.roberta = BertModel(config, add_pooling_layer=False)
|
103 |
+
self.lm_head = RobertaLMHead(config)
|
104 |
+
|
105 |
+
# Initialize weights and apply final processing
|
106 |
+
self.post_init()
|
107 |
+
|
108 |
+
def forward(
|
109 |
+
self,
|
110 |
+
input_ids: Optional[torch.LongTensor] = None,
|
111 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
112 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
113 |
+
position_ids: Optional[torch.LongTensor] = None,
|
114 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
115 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
116 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
117 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
118 |
+
labels: Optional[torch.LongTensor] = None,
|
119 |
+
output_attentions: Optional[bool] = None,
|
120 |
+
output_hidden_states: Optional[bool] = None,
|
121 |
+
return_dict: Optional[bool] = None,
|
122 |
+
) -> Union[Tuple[torch.Tensor], MaskedLMOutput]:
|
123 |
+
r"""
|
124 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
125 |
+
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
|
126 |
+
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
|
127 |
+
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
|
128 |
+
kwargs (`Dict[str, any]`, optional, defaults to *{}*):
|
129 |
+
Used to hide legacy arguments that have been deprecated.
|
130 |
+
"""
|
131 |
+
|
132 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
133 |
+
outputs = self.roberta(
|
134 |
+
input_ids,
|
135 |
+
attention_mask=attention_mask,
|
136 |
+
token_type_ids=token_type_ids,
|
137 |
+
position_ids=position_ids,
|
138 |
+
head_mask=head_mask,
|
139 |
+
inputs_embeds=inputs_embeds,
|
140 |
+
encoder_hidden_states=encoder_hidden_states,
|
141 |
+
encoder_attention_mask=encoder_attention_mask,
|
142 |
+
output_attentions=output_attentions,
|
143 |
+
output_hidden_states=output_hidden_states,
|
144 |
+
return_dict=return_dict,
|
145 |
+
)
|
146 |
+
|
147 |
+
sequence_output = outputs[0]
|
148 |
+
prediction_scores = self.lm_head(sequence_output)
|
149 |
+
|
150 |
+
masked_lm_loss = None
|
151 |
+
if labels is not None:
|
152 |
+
loss_fct = CrossEntropyLoss() # -100 index = padding token
|
153 |
+
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
|
154 |
+
|
155 |
+
if not return_dict:
|
156 |
+
output = (prediction_scores,) + outputs[2:]
|
157 |
+
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
|
158 |
+
|
159 |
+
return MaskedLMOutput(
|
160 |
+
loss=masked_lm_loss, # ()
|
161 |
+
logits=prediction_scores, # (batch_size, seq_len, vocab_size)
|
162 |
+
hidden_states=outputs.hidden_states, # (batch_size, seq_len, hidden_size)
|
163 |
+
attentions=outputs.attentions,
|
164 |
+
)
|
165 |
+
|
166 |
+
"""
|
167 |
+
Function: Use MLM to pre-train ALBERT
|
168 |
+
Notes:
|
169 |
+
- The label of non-masked token is -100, which can be used for cross-entropy function (only calculate loss at not -100)
|
170 |
+
"""
|
171 |
+
class AlbertForMaskedLM(AlbertPreTrainedModel):
|
172 |
+
|
173 |
+
def __init__(self, config, *inputs, **kwargs):
|
174 |
+
super().__init__(config, *inputs, **kwargs)
|
175 |
+
|
176 |
+
self.albert = AlbertModel(config, add_pooling_layer=False)
|
177 |
+
self.predictions = AlbertMLMHead(config)
|
178 |
+
|
179 |
+
# Initialize weights and apply final processing
|
180 |
+
self.post_init()
|
181 |
+
|
182 |
+
def forward(
|
183 |
+
self,
|
184 |
+
input_ids: Optional[torch.LongTensor] = None,
|
185 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
186 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
187 |
+
position_ids: Optional[torch.LongTensor] = None,
|
188 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
189 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
190 |
+
labels: Optional[torch.LongTensor] = None,
|
191 |
+
output_attentions: Optional[bool] = None,
|
192 |
+
output_hidden_states: Optional[bool] = None,
|
193 |
+
return_dict: Optional[bool] = None,
|
194 |
+
) -> Union[MaskedLMOutput, Tuple]:
|
195 |
+
r"""
|
196 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
197 |
+
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
|
198 |
+
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
|
199 |
+
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
|
200 |
+
|
201 |
+
Returns:
|
202 |
+
|
203 |
+
Example:
|
204 |
+
|
205 |
+
```python
|
206 |
+
>>> import torch
|
207 |
+
>>> from transformers import AlbertTokenizer, AlbertForMaskedLM
|
208 |
+
|
209 |
+
>>> tokenizer = AlbertTokenizer.from_pretrained("albert-base-v2")
|
210 |
+
>>> model = AlbertForMaskedLM.from_pretrained("albert-base-v2")
|
211 |
+
|
212 |
+
>>> # add mask_token
|
213 |
+
>>> inputs = tokenizer("The capital of [MASK] is Paris.", return_tensors="pt")
|
214 |
+
>>> with torch.no_grad():
|
215 |
+
... logits = model(**inputs).logits
|
216 |
+
|
217 |
+
>>> # retrieve index of [MASK]
|
218 |
+
>>> mask_token_index = (inputs.input_ids == tokenizer.mask_token_id)[0].nonzero(as_tuple=True)[0]
|
219 |
+
>>> predicted_token_id = logits[0, mask_token_index].argmax(axis=-1)
|
220 |
+
>>> tokenizer.decode(predicted_token_id)
|
221 |
+
"france"
|
222 |
+
```
|
223 |
+
|
224 |
+
```python
|
225 |
+
>>> labels = tokenizer("The capital of France is Paris.", return_tensors="pt")["input_ids"]
|
226 |
+
>>> labels = torch.where(inputs.input_ids == tokenizer.mask_token_id, labels, -100)
|
227 |
+
>>> outputs = model(**inputs, labels=labels)
|
228 |
+
>>> round(outputs.loss.item(), 2)
|
229 |
+
0.81
|
230 |
+
```
|
231 |
+
"""
|
232 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
233 |
+
|
234 |
+
outputs = self.albert(
|
235 |
+
input_ids=input_ids,
|
236 |
+
attention_mask=attention_mask,
|
237 |
+
token_type_ids=token_type_ids,
|
238 |
+
position_ids=position_ids,
|
239 |
+
head_mask=head_mask,
|
240 |
+
inputs_embeds=inputs_embeds,
|
241 |
+
output_attentions=output_attentions,
|
242 |
+
output_hidden_states=output_hidden_states,
|
243 |
+
return_dict=return_dict,
|
244 |
+
)
|
245 |
+
sequence_outputs = outputs[0]
|
246 |
+
|
247 |
+
prediction_scores = self.predictions(sequence_outputs)
|
248 |
+
|
249 |
+
masked_lm_loss = None
|
250 |
+
if labels is not None:
|
251 |
+
loss_fct = CrossEntropyLoss()
|
252 |
+
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
|
253 |
+
|
254 |
+
if not return_dict:
|
255 |
+
output = (prediction_scores,) + outputs[2:]
|
256 |
+
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
|
257 |
+
|
258 |
+
return MaskedLMOutput(
|
259 |
+
loss=masked_lm_loss,
|
260 |
+
logits=prediction_scores,
|
261 |
+
hidden_states=outputs.hidden_states,
|
262 |
+
attentions=outputs.attentions,
|
263 |
+
)
|
264 |
+
|
265 |
+
"""
|
266 |
+
Function: Use MLM to pre-train RoFormer
|
267 |
+
Notes:
|
268 |
+
- The label of non-masked token is -100, which can be used for cross-entropy function (only calculate loss at not -100)
|
269 |
+
"""
|
270 |
+
class RoFormerForMaskedLM(RoFormerPreTrainedModel):
|
271 |
+
def __init__(self, config):
|
272 |
+
super().__init__(config)
|
273 |
+
|
274 |
+
if config.is_decoder:
|
275 |
+
logger.warning(
|
276 |
+
"If you want to use `RoFormerForMaskedLM` make sure `config.is_decoder=False` for "
|
277 |
+
"bi-directional self-attention."
|
278 |
+
)
|
279 |
+
|
280 |
+
self.roformer = RoFormerModel(config)
|
281 |
+
self.cls = RoFormerOnlyMLMHead(config)
|
282 |
+
|
283 |
+
# Initialize weights and apply final processing
|
284 |
+
self.post_init()
|
285 |
+
|
286 |
+
def forward(
|
287 |
+
self,
|
288 |
+
input_ids: Optional[torch.LongTensor] = None,
|
289 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
290 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
291 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
292 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
293 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
294 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
295 |
+
labels: Optional[torch.LongTensor] = None,
|
296 |
+
output_attentions: Optional[bool] = None,
|
297 |
+
output_hidden_states: Optional[bool] = None,
|
298 |
+
return_dict: Optional[bool] = None,
|
299 |
+
) -> Union[MaskedLMOutput, Tuple[torch.Tensor]]:
|
300 |
+
r"""
|
301 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
302 |
+
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
|
303 |
+
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
|
304 |
+
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
305 |
+
"""
|
306 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
307 |
+
|
308 |
+
outputs = self.roformer(
|
309 |
+
input_ids,
|
310 |
+
attention_mask=attention_mask,
|
311 |
+
token_type_ids=token_type_ids,
|
312 |
+
head_mask=head_mask,
|
313 |
+
inputs_embeds=inputs_embeds,
|
314 |
+
encoder_hidden_states=encoder_hidden_states,
|
315 |
+
encoder_attention_mask=encoder_attention_mask,
|
316 |
+
output_attentions=output_attentions,
|
317 |
+
output_hidden_states=output_hidden_states,
|
318 |
+
return_dict=return_dict,
|
319 |
+
)
|
320 |
+
|
321 |
+
sequence_output = outputs[0]
|
322 |
+
prediction_scores = self.cls(sequence_output)
|
323 |
+
|
324 |
+
masked_lm_loss = None
|
325 |
+
if labels is not None:
|
326 |
+
loss_fct = CrossEntropyLoss() # -100 index = padding token
|
327 |
+
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
|
328 |
+
|
329 |
+
if not return_dict:
|
330 |
+
output = (prediction_scores,) + outputs[1:]
|
331 |
+
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
|
332 |
+
|
333 |
+
return MaskedLMOutput(
|
334 |
+
loss=masked_lm_loss,
|
335 |
+
logits=prediction_scores,
|
336 |
+
hidden_states=outputs.hidden_states,
|
337 |
+
attentions=outputs.attentions,
|
338 |
+
)
|
339 |
+
|
340 |
+
|
341 |
+
if __name__ == "__main__":
|
342 |
+
from transformers.models.bert.tokenization_bert import BertTokenizer
|
343 |
+
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
|
344 |
+
model = BertForMaskedLM.from_pretrained("bert-base-uncased")
|
345 |
+
input_text = "Today is a nice day, I will [MASK] to play [MASK] with my friends."
|
346 |
+
inputs = tokenizer(input_text, return_tensors="pt")
|
347 |
+
masked_positions = inputs["input_ids"] == tokenizer.mask_token_id
|
348 |
+
print("inputs=", inputs)
|
349 |
+
"""
|
350 |
+
inputs= {"input_ids": tensor([[ 101, 2651, 2003, 1037, 3835, 2154, 1010, 1045, 2097, 103, 2000, 2377,
|
351 |
+
103, 2007, 2026, 2814, 1012, 102]]), "token_type_ids": tensor([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]), "attention_mask": tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]])}
|
352 |
+
"""
|
353 |
+
outputs = model(**inputs)
|
354 |
+
masked_results = outputs.logits.argmax(-1)[masked_positions]
|
355 |
+
masked_results = tokenizer.convert_ids_to_tokens(masked_results)
|
356 |
+
print("masked_results=", masked_results)
|
357 |
+
"""
|
358 |
+
masked_results= ["have", "football"]
|
359 |
+
"""
|