lodeil commited on
Commit
e3e7ac5
·
1 Parent(s): 9ad5abe

Retrieve document structure for space

Browse files
Files changed (4) hide show
  1. app.py +104 -0
  2. books.png +0 -0
  3. doc.png +0 -0
  4. requirements.txt +6 -0
app.py ADDED
@@ -0,0 +1,104 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+
3
+ os.system('pip install pyyaml==5.1')
4
+ # workaround: install old version of pytorch since detectron2 hasn't released packages for pytorch 1.9 (issue: https://github.com/facebookresearch/detectron2/issues/3158)
5
+ os.system('pip install torch==1.8.0+cu101 torchvision==0.9.0+cu101 -f https://download.pytorch.org/whl/torch_stable.html')
6
+
7
+ # install detectron2 that matches pytorch 1.8
8
+ # See https://detectron2.readthedocs.io/tutorials/install.html for instructions
9
+ os.system('pip install -q detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu101/torch1.8/index.html')
10
+
11
+ ## install PyTesseract
12
+ os.system('pip install -q pytesseract')
13
+
14
+
15
+ import gradio as gr
16
+ import numpy as np
17
+ from transformers import LayoutLMv2Processor, LayoutLMv2ForTokenClassification
18
+ from datasets import load_dataset
19
+ from PIL import Image, ImageDraw, ImageFont
20
+ import pytesseract
21
+
22
+ # If you don't have tesseract executable in your PATH, include the following:
23
+ # pytesseract.pytesseract.tesseract_cmd = r'D:\\softwares\\Tesseract-OCR\\tesseract.exe'
24
+
25
+
26
+ processor = LayoutLMv2Processor.from_pretrained("microsoft/layoutlmv2-base-uncased")
27
+ model = LayoutLMv2ForTokenClassification.from_pretrained("nielsr/layoutlmv2-finetuned-funsd")
28
+
29
+ # load image example
30
+ dataset = load_dataset("nielsr/funsd", split="test")
31
+ image = Image.open(dataset[0]["image_path"]).convert("RGB")
32
+ image = Image.open("./doc.png")
33
+ image.save("document.png")
34
+ # define id2label, label2color
35
+ labels = dataset.features['ner_tags'].feature.names
36
+ id2label = {v: k for v, k in enumerate(labels)}
37
+ label2color = {'question':'blue', 'answer':'green', 'header':'orange', 'other':'violet'}
38
+
39
+ def unnormalize_box(bbox, width, height):
40
+ return [
41
+ width * (bbox[0] / 1000),
42
+ height * (bbox[1] / 1000),
43
+ width * (bbox[2] / 1000),
44
+ height * (bbox[3] / 1000),
45
+ ]
46
+
47
+ def iob_to_label(label):
48
+ label = label[2:]
49
+ if not label:
50
+ return 'other'
51
+ return label
52
+
53
+ def process_image(image):
54
+ width, height = image.size
55
+
56
+ # encode
57
+ encoding = processor(image, truncation=True, return_offsets_mapping=True, return_tensors="pt")
58
+ offset_mapping = encoding.pop('offset_mapping')
59
+
60
+ # forward pass
61
+ outputs = model(**encoding)
62
+
63
+ # get predictions
64
+ predictions = outputs.logits.argmax(-1).squeeze().tolist()
65
+ token_boxes = encoding.bbox.squeeze().tolist()
66
+
67
+ # only keep non-subword predictions
68
+ is_subword = np.array(offset_mapping.squeeze().tolist())[:,0] != 0
69
+ true_predictions = [id2label[pred] for idx, pred in enumerate(predictions) if not is_subword[idx]]
70
+ true_boxes = [unnormalize_box(box, width, height) for idx, box in enumerate(token_boxes) if not is_subword[idx]]
71
+
72
+ # draw predictions over the image
73
+ draw = ImageDraw.Draw(image)
74
+ font = ImageFont.load_default()
75
+ for prediction, box in zip(true_predictions, true_boxes):
76
+ predicted_label = iob_to_label(prediction).lower()
77
+ draw.rectangle(box, outline=label2color[predicted_label])
78
+ draw.text((box[0]+10, box[1]-10), text=predicted_label, fill=label2color[predicted_label], font=font)
79
+
80
+ return image
81
+
82
+
83
+ title = "🧱 Document structure inference"
84
+ description = f""" ℹ️ \n Retrieve document structure from image. \n Tag detected boxes as QUESTION - ANSWER - HEADER - OTHER. \n Upload your own document or use the example below.
85
+ """
86
+ article = "layoutlmv2-base-uncased model"
87
+ examples =[['document.png']]
88
+
89
+ css = ".output-image, .input-image {height: 40rem !important; width: 100% !important;}"
90
+ #css = "@media screen and (max-width: 600px) { .output_image, .input_image {height:20rem !important; width: 100% !important;} }"
91
+ # css = ".output_image, .input_image {height: 600px !important}"
92
+
93
+ css = ".image-preview {height: auto !important;}"
94
+
95
+ iface = gr.Interface(fn=process_image,
96
+ inputs=gr.inputs.Image(type="pil"),
97
+ outputs=gr.outputs.Image(type="pil", label="annotated image"),
98
+ title=title,
99
+ description=description,
100
+ article=article,
101
+ examples=examples,
102
+ css=css,
103
+ enable_queue=True)
104
+ iface.launch(debug=True)
books.png ADDED
doc.png ADDED
requirements.txt ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ gradio
2
+ Pillow
3
+ numpy
4
+ datasets
5
+ torch
6
+ transformers