Spaces:
Running
on
Zero
Running
on
Zero
File size: 16,297 Bytes
d0d6aa5 5f3dff7 959fd21 5f3dff7 959fd21 5f3dff7 959fd21 5f3dff7 959fd21 5f3dff7 959fd21 5f3dff7 6847b3d 5f3dff7 959fd21 5f3dff7 959fd21 5f3dff7 959fd21 5f3dff7 959fd21 5f3dff7 959fd21 5f3dff7 959fd21 5f3dff7 959fd21 5f3dff7 959fd21 5f3dff7 959fd21 5f3dff7 959fd21 5f3dff7 041d964 5f3dff7 041d964 5f3dff7 959fd21 5f3dff7 959fd21 5f3dff7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 |
import spaces
import argparse
from datetime import datetime
from pathlib import Path
import numpy as np
import torch
from PIL import Image
import gradio as gr
import shutil
import librosa
import python_speech_features
import time
from LIA_Model import LIA_Model
import os
from tqdm import tqdm
import argparse
import numpy as np
from torchvision import transforms
from templates import *
import argparse
import shutil
from moviepy.editor import *
import librosa
import python_speech_features
import importlib.util
import time
import os
import time
import numpy as np
# Disable Gradio analytics to avoid network-related issues
gr.analytics_enabled = False
def check_package_installed(package_name):
package_spec = importlib.util.find_spec(package_name)
if package_spec is None:
print(f"{package_name} is not installed.")
return False
else:
print(f"{package_name} is installed.")
return True
def frames_to_video(input_path, audio_path, output_path, fps=25):
image_files = [os.path.join(input_path, img) for img in sorted(os.listdir(input_path))]
clips = [ImageClip(m).set_duration(1/fps) for m in image_files]
video = concatenate_videoclips(clips, method="compose")
audio = AudioFileClip(audio_path)
final_video = video.set_audio(audio)
final_video.write_videofile(output_path, fps=fps, codec='libx264', audio_codec='aac')
def load_image(filename, size):
img = Image.open(filename).convert('RGB')
img = img.resize((size, size))
img = np.asarray(img)
img = np.transpose(img, (2, 0, 1)) # 3 x 256 x 256
return img / 255.0
def img_preprocessing(img_path, size):
img = load_image(img_path, size) # [0, 1]
img = torch.from_numpy(img).unsqueeze(0).float() # [0, 1]
imgs_norm = (img - 0.5) * 2.0 # [-1, 1]
return imgs_norm
def saved_image(img_tensor, img_path):
toPIL = transforms.ToPILImage()
img = toPIL(img_tensor.detach().cpu().squeeze(0)) # 使用squeeze(0)来移除批次维度
img.save(img_path)
def main(args):
frames_result_saved_path = os.path.join(args.result_path, 'frames')
os.makedirs(frames_result_saved_path, exist_ok=True)
test_image_name = os.path.splitext(os.path.basename(args.test_image_path))[0]
audio_name = os.path.splitext(os.path.basename(args.test_audio_path))[0]
predicted_video_256_path = os.path.join(args.result_path, f'{test_image_name}-{audio_name}.mp4')
predicted_video_512_path = os.path.join(args.result_path, f'{test_image_name}-{audio_name}_SR.mp4')
#======Loading Stage 1 model=========
lia = LIA_Model(motion_dim=args.motion_dim, fusion_type='weighted_sum')
lia.load_lightning_model(args.stage1_checkpoint_path)
lia.to('cuda')
#============================
conf = ffhq256_autoenc()
conf.seed = args.seed
conf.decoder_layers = args.decoder_layers
conf.infer_type = args.infer_type
conf.motion_dim = args.motion_dim
if args.infer_type == 'mfcc_full_control':
conf.face_location=True
conf.face_scale=True
conf.mfcc = True
elif args.infer_type == 'mfcc_pose_only':
conf.face_location=False
conf.face_scale=False
conf.mfcc = True
elif args.infer_type == 'hubert_pose_only':
conf.face_location=False
conf.face_scale=False
conf.mfcc = False
elif args.infer_type == 'hubert_audio_only':
conf.face_location=False
conf.face_scale=False
conf.mfcc = False
elif args.infer_type == 'hubert_full_control':
conf.face_location=True
conf.face_scale=True
conf.mfcc = False
else:
print('Type NOT Found!')
exit(0)
if not os.path.exists(args.test_image_path):
print(f'{args.test_image_path} does not exist!')
exit(0)
if not os.path.exists(args.test_audio_path):
print(f'{args.test_audio_path} does not exist!')
exit(0)
img_source = img_preprocessing(args.test_image_path, args.image_size).to('cuda')
one_shot_lia_start, one_shot_lia_direction, feats = lia.get_start_direction_code(img_source, img_source, img_source, img_source)
#======Loading Stage 2 model=========
model = LitModel(conf)
state = torch.load(args.stage2_checkpoint_path, map_location='cpu')
model.load_state_dict(state, strict=True)
model.ema_model.eval()
model.ema_model.to('cuda')
#=================================
#======Audio Input=========
if conf.infer_type.startswith('mfcc'):
# MFCC features
wav, sr = librosa.load(args.test_audio_path, sr=16000)
input_values = python_speech_features.mfcc(signal=wav, samplerate=sr, numcep=13, winlen=0.025, winstep=0.01)
d_mfcc_feat = python_speech_features.base.delta(input_values, 1)
d_mfcc_feat2 = python_speech_features.base.delta(input_values, 2)
audio_driven_obj = np.hstack((input_values, d_mfcc_feat, d_mfcc_feat2))
frame_start, frame_end = 0, int(audio_driven_obj.shape[0]/4)
audio_start, audio_end = int(frame_start * 4), int(frame_end * 4) # The video frame is fixed to 25 hz and the audio is fixed to 100 hz
audio_driven = torch.Tensor(audio_driven_obj[audio_start:audio_end,:]).unsqueeze(0).float().to('cuda')
elif conf.infer_type.startswith('hubert'):
# Hubert features
if not os.path.exists(args.test_hubert_path):
if not check_package_installed('transformers'):
print('Please install transformers module first.')
exit(0)
hubert_model_path = 'ckpt/chinese-hubert-large'
if not os.path.exists(hubert_model_path):
print('Please download the hubert weight into the ckpts path first.')
exit(0)
print('You did not extract the audio features in advance, extracting online now, which will increase processing delay')
start_time = time.time()
# load hubert model
from transformers import Wav2Vec2FeatureExtractor, HubertModel
audio_model = HubertModel.from_pretrained(hubert_model_path).to('cuda')
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(hubert_model_path)
audio_model.feature_extractor._freeze_parameters()
audio_model.eval()
# hubert model forward pass
audio, sr = librosa.load(args.test_audio_path, sr=16000)
input_values = feature_extractor(audio, sampling_rate=16000, padding=True, do_normalize=True, return_tensors="pt").input_values
input_values = input_values.to('cuda')
ws_feats = []
with torch.no_grad():
outputs = audio_model(input_values, output_hidden_states=True)
for i in range(len(outputs.hidden_states)):
ws_feats.append(outputs.hidden_states[i].detach().cpu().numpy())
ws_feat_obj = np.array(ws_feats)
ws_feat_obj = np.squeeze(ws_feat_obj, 1)
ws_feat_obj = np.pad(ws_feat_obj, ((0, 0), (0, 1), (0, 0)), 'edge') # align the audio length with video frame
execution_time = time.time() - start_time
print(f"Extraction Audio Feature: {execution_time:.2f} Seconds")
audio_driven_obj = ws_feat_obj
else:
print(f'Using audio feature from path: {args.test_hubert_path}')
audio_driven_obj = np.load(args.test_hubert_path)
frame_start, frame_end = 0, int(audio_driven_obj.shape[1]/2)
audio_start, audio_end = int(frame_start * 2), int(frame_end * 2) # The video frame is fixed to 25 hz and the audio is fixed to 50 hz
audio_driven = torch.Tensor(audio_driven_obj[:,audio_start:audio_end,:]).unsqueeze(0).float().to('cuda')
#============================
# Diffusion Noise
noisyT = torch.randn((1,frame_end, args.motion_dim)).to('cuda')
#======Inputs for Attribute Control=========
if os.path.exists(args.pose_driven_path):
pose_obj = np.load(args.pose_driven_path)
if len(pose_obj.shape) != 2:
print('please check your pose information. The shape must be like (T, 3).')
exit(0)
if pose_obj.shape[1] != 3:
print('please check your pose information. The shape must be like (T, 3).')
exit(0)
if pose_obj.shape[0] >= frame_end:
pose_obj = pose_obj[:frame_end,:]
else:
padding = np.tile(pose_obj[-1, :], (frame_end - pose_obj.shape[0], 1))
pose_obj = np.vstack((pose_obj, padding))
pose_signal = torch.Tensor(pose_obj).unsqueeze(0).to('cuda') / 90 # 90 is for normalization here
else:
yaw_signal = torch.zeros(1, frame_end, 1).to('cuda') + args.pose_yaw
pitch_signal = torch.zeros(1, frame_end, 1).to('cuda') + args.pose_pitch
roll_signal = torch.zeros(1, frame_end, 1).to('cuda') + args.pose_roll
pose_signal = torch.cat((yaw_signal, pitch_signal, roll_signal), dim=-1)
pose_signal = torch.clamp(pose_signal, -1, 1)
face_location_signal = torch.zeros(1, frame_end, 1).to('cuda') + args.face_location
face_scae_signal = torch.zeros(1, frame_end, 1).to('cuda') + args.face_scale
#===========================================
start_time = time.time()
#======Diffusion Denosing Process=========
generated_directions = model.render(one_shot_lia_start, one_shot_lia_direction, audio_driven, face_location_signal, face_scae_signal, pose_signal, noisyT, args.step_T, control_flag=args.control_flag)
#=========================================
execution_time = time.time() - start_time
print(f"Motion Diffusion Model: {execution_time:.2f} Seconds")
generated_directions = generated_directions.detach().cpu().numpy()
start_time = time.time()
#======Rendering images frame-by-frame=========
for pred_index in tqdm(range(generated_directions.shape[1])):
ori_img_recon = lia.render(one_shot_lia_start, torch.Tensor(generated_directions[:,pred_index,:]).to('cuda'), feats)
ori_img_recon = ori_img_recon.clamp(-1, 1)
wav_pred = (ori_img_recon.detach() + 1) / 2
saved_image(wav_pred, os.path.join(frames_result_saved_path, "%06d.png"%(pred_index)))
#==============================================
execution_time = time.time() - start_time
print(f"Renderer Model: {execution_time:.2f} Seconds")
frames_to_video(frames_result_saved_path, args.test_audio_path, predicted_video_256_path)
shutil.rmtree(frames_result_saved_path)
# Enhancer
if args.face_sr and check_package_installed('gfpgan'):
from face_sr.face_enhancer import enhancer_list
import imageio
# Super-resolution
imageio.mimsave(predicted_video_512_path+'.tmp.mp4', enhancer_list(predicted_video_256_path, method='gfpgan', bg_upsampler=None), fps=float(25))
# Merge audio and video
video_clip = VideoFileClip(predicted_video_512_path+'.tmp.mp4')
audio_clip = AudioFileClip(predicted_video_256_path)
final_clip = video_clip.set_audio(audio_clip)
final_clip.write_videofile(predicted_video_512_path, codec='libx264', audio_codec='aac')
os.remove(predicted_video_512_path+'.tmp.mp4')
if args.face_sr:
return predicted_video_256_path, predicted_video_512_path
else:
return predicted_video_256_path, predicted_video_256_path
@spaces.GPU
def generate_video(uploaded_img, uploaded_audio, infer_type,
pose_yaw, pose_pitch, pose_roll, face_location, face_scale, step_T, face_sr, seed):
if uploaded_img is None or uploaded_audio is None:
return None, gr.Markdown("Error: Input image or audio file is empty. Please check and upload both files.")
model_mapping = {
"mfcc_pose_only": "ckpt/stage2_pose_only_mfcc.ckpt",
"mfcc_full_control": "ckpt/stage2_more_controllable_mfcc.ckpt",
"hubert_audio_only": "ckpt/stage2_audio_only_hubert.ckpt",
"hubert_pose_only": "ckpt/stage2_pose_only_hubert.ckpt",
"hubert_full_control": "ckpt/stage2_full_control_hubert.ckpt",
}
stage2_checkpoint_path = model_mapping.get(infer_type, "default_checkpoint.ckpt")
try:
args = argparse.Namespace(
infer_type=infer_type,
test_image_path=uploaded_img,
test_audio_path=uploaded_audio,
test_hubert_path='',
result_path='./outputs/',
stage1_checkpoint_path='ckpt/stage1.ckpt',
stage2_checkpoint_path=stage2_checkpoint_path,
seed=seed,
control_flag=True,
pose_yaw=pose_yaw,
pose_pitch=pose_pitch,
pose_roll=pose_roll,
face_location=face_location,
pose_driven_path='not_supported_in_this_mode',
face_scale=face_scale,
step_T=step_T,
image_size=256,
device='cuda',
motion_dim=20,
decoder_layers=2,
face_sr=face_sr
)
output_256_video_path, output_512_video_path = main(args)
if not os.path.exists(output_256_video_path):
return None, gr.Markdown("Error: Video generation failed. Please check your inputs and try again.")
if output_256_video_path == output_512_video_path:
return gr.Video(value=output_256_video_path), None, gr.Markdown("Video (256*256 only) generated successfully!")
return gr.Video(value=output_256_video_path), gr.Video(value=output_512_video_path), gr.Markdown("Video generated successfully!")
except Exception as e:
return None, None, gr.Markdown(f"Error: An unexpected error occurred - {str(e)}")
default_values = {
"pose_yaw": 0,
"pose_pitch": 0,
"pose_roll": 0,
"face_location": 0.5,
"face_scale": 0.5,
"step_T": 50,
"seed": 0,
}
with gr.Blocks() as demo:
gr.Markdown('# AniTalker')
gr.Markdown('![]()')
with gr.Row():
with gr.Column():
uploaded_img = gr.Image(type="filepath", label="Reference Image")
uploaded_audio = gr.Audio(type="filepath", label="Input Audio")
with gr.Column():
output_video_256 = gr.Video(label="Generated Video (256)")
output_video_512 = gr.Video(label="Generated Video (512)")
output_message = gr.Markdown()
generate_button = gr.Button("Generate Video")
with gr.Accordion("Configuration", open=True):
infer_type = gr.Dropdown(
label="Inference Type",
choices=['mfcc_pose_only', 'mfcc_full_control', 'hubert_audio_only', 'hubert_pose_only'],
value='hubert_audio_only'
)
face_sr = gr.Checkbox(label="Enable Face Super-Resolution (512*512)", value=False)
seed = gr.Number(label="Seed", value=default_values["seed"])
pose_yaw = gr.Slider(label="pose_yaw", minimum=-1, maximum=1, value=default_values["pose_yaw"])
pose_pitch = gr.Slider(label="pose_pitch", minimum=-1, maximum=1, value=default_values["pose_pitch"])
pose_roll = gr.Slider(label="pose_roll", minimum=-1, maximum=1, value=default_values["pose_roll"])
face_location = gr.Slider(label="face_location", minimum=0, maximum=1, value=default_values["face_location"])
face_scale = gr.Slider(label="face_scale", minimum=0, maximum=1, value=default_values["face_scale"])
step_T = gr.Slider(label="step_T", minimum=1, maximum=100, step=1, value=default_values["step_T"])
generate_button.click(
generate_video,
inputs=[
uploaded_img, uploaded_audio, infer_type,
pose_yaw, pose_pitch, pose_roll, face_location, face_scale, step_T, face_sr, seed
],
outputs=[output_video_256, output_video_512, output_message]
)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='EchoMimic')
parser.add_argument('--server_name', type=str, default='0.0.0.0', help='Server name')
parser.add_argument('--server_port', type=int, default=3001, help='Server port')
args = parser.parse_args()
demo.launch() |