Spaces:
Running
on
Zero
Running
on
Zero
Upload 32 files
Browse files- LIA_Model.py +39 -0
- choices.py +179 -0
- config.py +388 -0
- config_base.py +72 -0
- dataset.py +218 -0
- dataset_util.py +13 -0
- demo.py +295 -0
- diffusion/__init__.py +6 -0
- diffusion/base.py +1128 -0
- diffusion/diffusion.py +156 -0
- diffusion/resample.py +63 -0
- dist_utils.py +42 -0
- experiment.py +356 -0
- face_sr/face_enhancer.py +123 -0
- face_sr/videoio.py +41 -0
- model/__init__.py +6 -0
- model/base.py +37 -0
- model/blocks.py +567 -0
- model/diffusion.py +294 -0
- model/latentnet.py +193 -0
- model/nn.py +137 -0
- model/seq2seq.py +141 -0
- model/unet.py +552 -0
- model/unet_autoenc.py +283 -0
- networks/__init__.py +0 -0
- networks/discriminator.py +259 -0
- networks/encoder.py +374 -0
- networks/generator.py +27 -0
- networks/styledecoder.py +527 -0
- networks/utils.py +53 -0
- renderer.py +25 -0
- templates.py +301 -0
LIA_Model.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from networks.encoder import Encoder
|
4 |
+
from networks.styledecoder import Synthesis
|
5 |
+
|
6 |
+
# This part is modified from: https://github.com/wyhsirius/LIA
|
7 |
+
class LIA_Model(torch.nn.Module):
|
8 |
+
def __init__(self, size = 256, style_dim = 512, motion_dim = 20, channel_multiplier=1, blur_kernel=[1, 3, 3, 1], fusion_type=''):
|
9 |
+
super().__init__()
|
10 |
+
self.enc = Encoder(size, style_dim, motion_dim, fusion_type)
|
11 |
+
self.dec = Synthesis(size, style_dim, motion_dim, blur_kernel, channel_multiplier)
|
12 |
+
|
13 |
+
def get_start_direction_code(self, x_start, x_target, x_face, x_aug):
|
14 |
+
enc_dic = self.enc(x_start, x_target, x_face, x_aug)
|
15 |
+
|
16 |
+
wa, alpha, feats = enc_dic['h_source'], enc_dic['h_motion'], enc_dic['feats']
|
17 |
+
|
18 |
+
return wa, alpha, feats
|
19 |
+
|
20 |
+
def render(self, start, direction, feats):
|
21 |
+
return self.dec(start, direction, feats)
|
22 |
+
|
23 |
+
def load_lightning_model(self, lia_pretrained_model_path):
|
24 |
+
selfState = self.state_dict()
|
25 |
+
|
26 |
+
state = torch.load(lia_pretrained_model_path, map_location='cpu')
|
27 |
+
for name, param in state.items():
|
28 |
+
origName = name;
|
29 |
+
|
30 |
+
if name not in selfState:
|
31 |
+
name = name.replace("lia.", "")
|
32 |
+
if name not in selfState:
|
33 |
+
print("%s is not in the model."%origName)
|
34 |
+
# You can ignore those errors as some parameters are only used for training
|
35 |
+
continue
|
36 |
+
if selfState[name].size() != state[origName].size():
|
37 |
+
print("Wrong parameter length: %s, model: %s, loaded: %s"%(origName, selfState[name].size(), state[origName].size()))
|
38 |
+
continue
|
39 |
+
selfState[name].copy_(param)
|
choices.py
ADDED
@@ -0,0 +1,179 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from enum import Enum
|
2 |
+
from torch import nn
|
3 |
+
|
4 |
+
|
5 |
+
class TrainMode(Enum):
|
6 |
+
# manipulate mode = training the classifier
|
7 |
+
manipulate = 'manipulate'
|
8 |
+
# default trainin mode!
|
9 |
+
diffusion = 'diffusion'
|
10 |
+
# default latent training mode!
|
11 |
+
# fitting the a DDPM to a given latent
|
12 |
+
latent_diffusion = 'latentdiffusion'
|
13 |
+
|
14 |
+
def is_manipulate(self):
|
15 |
+
return self in [
|
16 |
+
TrainMode.manipulate,
|
17 |
+
]
|
18 |
+
|
19 |
+
def is_diffusion(self):
|
20 |
+
return self in [
|
21 |
+
TrainMode.diffusion,
|
22 |
+
TrainMode.latent_diffusion,
|
23 |
+
]
|
24 |
+
|
25 |
+
def is_autoenc(self):
|
26 |
+
# the network possibly does autoencoding
|
27 |
+
return self in [
|
28 |
+
TrainMode.diffusion,
|
29 |
+
]
|
30 |
+
|
31 |
+
def is_latent_diffusion(self):
|
32 |
+
return self in [
|
33 |
+
TrainMode.latent_diffusion,
|
34 |
+
]
|
35 |
+
|
36 |
+
def use_latent_net(self):
|
37 |
+
return self.is_latent_diffusion()
|
38 |
+
|
39 |
+
def require_dataset_infer(self):
|
40 |
+
"""
|
41 |
+
whether training in this mode requires the latent variables to be available?
|
42 |
+
"""
|
43 |
+
# this will precalculate all the latents before hand
|
44 |
+
# and the dataset will be all the predicted latents
|
45 |
+
return self in [
|
46 |
+
TrainMode.latent_diffusion,
|
47 |
+
TrainMode.manipulate,
|
48 |
+
]
|
49 |
+
|
50 |
+
|
51 |
+
class ManipulateMode(Enum):
|
52 |
+
"""
|
53 |
+
how to train the classifier to manipulate
|
54 |
+
"""
|
55 |
+
# train on whole celeba attr dataset
|
56 |
+
celebahq_all = 'celebahq_all'
|
57 |
+
# celeba with D2C's crop
|
58 |
+
d2c_fewshot = 'd2cfewshot'
|
59 |
+
d2c_fewshot_allneg = 'd2cfewshotallneg'
|
60 |
+
|
61 |
+
def is_celeba_attr(self):
|
62 |
+
return self in [
|
63 |
+
ManipulateMode.d2c_fewshot,
|
64 |
+
ManipulateMode.d2c_fewshot_allneg,
|
65 |
+
ManipulateMode.celebahq_all,
|
66 |
+
]
|
67 |
+
|
68 |
+
def is_single_class(self):
|
69 |
+
return self in [
|
70 |
+
ManipulateMode.d2c_fewshot,
|
71 |
+
ManipulateMode.d2c_fewshot_allneg,
|
72 |
+
]
|
73 |
+
|
74 |
+
def is_fewshot(self):
|
75 |
+
return self in [
|
76 |
+
ManipulateMode.d2c_fewshot,
|
77 |
+
ManipulateMode.d2c_fewshot_allneg,
|
78 |
+
]
|
79 |
+
|
80 |
+
def is_fewshot_allneg(self):
|
81 |
+
return self in [
|
82 |
+
ManipulateMode.d2c_fewshot_allneg,
|
83 |
+
]
|
84 |
+
|
85 |
+
|
86 |
+
class ModelType(Enum):
|
87 |
+
"""
|
88 |
+
Kinds of the backbone models
|
89 |
+
"""
|
90 |
+
|
91 |
+
# unconditional ddpm
|
92 |
+
ddpm = 'ddpm'
|
93 |
+
# autoencoding ddpm cannot do unconditional generation
|
94 |
+
autoencoder = 'autoencoder'
|
95 |
+
|
96 |
+
def has_autoenc(self):
|
97 |
+
return self in [
|
98 |
+
ModelType.autoencoder,
|
99 |
+
]
|
100 |
+
|
101 |
+
def can_sample(self):
|
102 |
+
return self in [ModelType.ddpm]
|
103 |
+
|
104 |
+
|
105 |
+
class ModelName(Enum):
|
106 |
+
"""
|
107 |
+
List of all supported model classes
|
108 |
+
"""
|
109 |
+
|
110 |
+
beatgans_ddpm = 'beatgans_ddpm'
|
111 |
+
beatgans_autoenc = 'beatgans_autoenc'
|
112 |
+
|
113 |
+
|
114 |
+
class ModelMeanType(Enum):
|
115 |
+
"""
|
116 |
+
Which type of output the model predicts.
|
117 |
+
"""
|
118 |
+
|
119 |
+
eps = 'eps' # the model predicts epsilon
|
120 |
+
|
121 |
+
|
122 |
+
class ModelVarType(Enum):
|
123 |
+
"""
|
124 |
+
What is used as the model's output variance.
|
125 |
+
|
126 |
+
The LEARNED_RANGE option has been added to allow the model to predict
|
127 |
+
values between FIXED_SMALL and FIXED_LARGE, making its job easier.
|
128 |
+
"""
|
129 |
+
|
130 |
+
# posterior beta_t
|
131 |
+
fixed_small = 'fixed_small'
|
132 |
+
# beta_t
|
133 |
+
fixed_large = 'fixed_large'
|
134 |
+
|
135 |
+
|
136 |
+
class LossType(Enum):
|
137 |
+
mse = 'mse' # use raw MSE loss (and KL when learning variances)
|
138 |
+
l1 = 'l1'
|
139 |
+
|
140 |
+
|
141 |
+
class GenerativeType(Enum):
|
142 |
+
"""
|
143 |
+
How's a sample generated
|
144 |
+
"""
|
145 |
+
|
146 |
+
ddpm = 'ddpm'
|
147 |
+
ddim = 'ddim'
|
148 |
+
|
149 |
+
|
150 |
+
class OptimizerType(Enum):
|
151 |
+
adam = 'adam'
|
152 |
+
adamw = 'adamw'
|
153 |
+
|
154 |
+
|
155 |
+
class Activation(Enum):
|
156 |
+
none = 'none'
|
157 |
+
relu = 'relu'
|
158 |
+
lrelu = 'lrelu'
|
159 |
+
silu = 'silu'
|
160 |
+
tanh = 'tanh'
|
161 |
+
|
162 |
+
def get_act(self):
|
163 |
+
if self == Activation.none:
|
164 |
+
return nn.Identity()
|
165 |
+
elif self == Activation.relu:
|
166 |
+
return nn.ReLU()
|
167 |
+
elif self == Activation.lrelu:
|
168 |
+
return nn.LeakyReLU(negative_slope=0.2)
|
169 |
+
elif self == Activation.silu:
|
170 |
+
return nn.SiLU()
|
171 |
+
elif self == Activation.tanh:
|
172 |
+
return nn.Tanh()
|
173 |
+
else:
|
174 |
+
raise NotImplementedError()
|
175 |
+
|
176 |
+
|
177 |
+
class ManipulateLossType(Enum):
|
178 |
+
bce = 'bce'
|
179 |
+
mse = 'mse'
|
config.py
ADDED
@@ -0,0 +1,388 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from model.unet import ScaleAt
|
2 |
+
from model.latentnet import *
|
3 |
+
from diffusion.resample import UniformSampler
|
4 |
+
from diffusion.diffusion import space_timesteps
|
5 |
+
from typing import Tuple
|
6 |
+
|
7 |
+
from torch.utils.data import DataLoader
|
8 |
+
|
9 |
+
from config_base import BaseConfig
|
10 |
+
from diffusion import *
|
11 |
+
from diffusion.base import GenerativeType, LossType, ModelMeanType, ModelVarType, get_named_beta_schedule
|
12 |
+
from model import *
|
13 |
+
from choices import *
|
14 |
+
from multiprocessing import get_context
|
15 |
+
import os
|
16 |
+
from dataset_util import *
|
17 |
+
from torch.utils.data.distributed import DistributedSampler
|
18 |
+
from dataset import LatentDataLoader
|
19 |
+
|
20 |
+
@dataclass
|
21 |
+
class PretrainConfig(BaseConfig):
|
22 |
+
name: str
|
23 |
+
path: str
|
24 |
+
|
25 |
+
|
26 |
+
@dataclass
|
27 |
+
class TrainConfig(BaseConfig):
|
28 |
+
# random seed
|
29 |
+
seed: int = 0
|
30 |
+
train_mode: TrainMode = TrainMode.diffusion
|
31 |
+
train_cond0_prob: float = 0
|
32 |
+
train_pred_xstart_detach: bool = True
|
33 |
+
train_interpolate_prob: float = 0
|
34 |
+
train_interpolate_img: bool = False
|
35 |
+
manipulate_mode: ManipulateMode = ManipulateMode.celebahq_all
|
36 |
+
manipulate_cls: str = None
|
37 |
+
manipulate_shots: int = None
|
38 |
+
manipulate_loss: ManipulateLossType = ManipulateLossType.bce
|
39 |
+
manipulate_znormalize: bool = False
|
40 |
+
manipulate_seed: int = 0
|
41 |
+
accum_batches: int = 1
|
42 |
+
autoenc_mid_attn: bool = True
|
43 |
+
batch_size: int = 16
|
44 |
+
batch_size_eval: int = None
|
45 |
+
beatgans_gen_type: GenerativeType = GenerativeType.ddim
|
46 |
+
beatgans_loss_type: LossType = LossType.mse
|
47 |
+
beatgans_model_mean_type: ModelMeanType = ModelMeanType.eps
|
48 |
+
beatgans_model_var_type: ModelVarType = ModelVarType.fixed_large
|
49 |
+
beatgans_rescale_timesteps: bool = False
|
50 |
+
latent_infer_path: str = None
|
51 |
+
latent_znormalize: bool = False
|
52 |
+
latent_gen_type: GenerativeType = GenerativeType.ddim
|
53 |
+
latent_loss_type: LossType = LossType.mse
|
54 |
+
latent_model_mean_type: ModelMeanType = ModelMeanType.eps
|
55 |
+
latent_model_var_type: ModelVarType = ModelVarType.fixed_large
|
56 |
+
latent_rescale_timesteps: bool = False
|
57 |
+
latent_T_eval: int = 1_000
|
58 |
+
latent_clip_sample: bool = False
|
59 |
+
latent_beta_scheduler: str = 'linear'
|
60 |
+
beta_scheduler: str = 'linear'
|
61 |
+
data_name: str = ''
|
62 |
+
data_val_name: str = None
|
63 |
+
diffusion_type: str = None
|
64 |
+
dropout: float = 0.1
|
65 |
+
ema_decay: float = 0.9999
|
66 |
+
eval_num_images: int = 5_000
|
67 |
+
eval_every_samples: int = 200_000
|
68 |
+
eval_ema_every_samples: int = 200_000
|
69 |
+
fid_use_torch: bool = True
|
70 |
+
fp16: bool = False
|
71 |
+
grad_clip: float = 1
|
72 |
+
img_size: int = 64
|
73 |
+
lr: float = 0.0001
|
74 |
+
optimizer: OptimizerType = OptimizerType.adam
|
75 |
+
weight_decay: float = 0
|
76 |
+
model_conf: ModelConfig = None
|
77 |
+
model_name: ModelName = None
|
78 |
+
model_type: ModelType = None
|
79 |
+
net_attn: Tuple[int] = None
|
80 |
+
net_beatgans_attn_head: int = 1
|
81 |
+
# not necessarily the same as the the number of style channels
|
82 |
+
net_beatgans_embed_channels: int = 512
|
83 |
+
net_resblock_updown: bool = True
|
84 |
+
net_enc_use_time: bool = False
|
85 |
+
net_enc_pool: str = 'adaptivenonzero'
|
86 |
+
net_beatgans_gradient_checkpoint: bool = False
|
87 |
+
net_beatgans_resnet_two_cond: bool = False
|
88 |
+
net_beatgans_resnet_use_zero_module: bool = True
|
89 |
+
net_beatgans_resnet_scale_at: ScaleAt = ScaleAt.after_norm
|
90 |
+
net_beatgans_resnet_cond_channels: int = None
|
91 |
+
net_ch_mult: Tuple[int] = None
|
92 |
+
net_ch: int = 64
|
93 |
+
net_enc_attn: Tuple[int] = None
|
94 |
+
net_enc_k: int = None
|
95 |
+
# number of resblocks for the encoder (half-unet)
|
96 |
+
net_enc_num_res_blocks: int = 2
|
97 |
+
net_enc_channel_mult: Tuple[int] = None
|
98 |
+
net_enc_grad_checkpoint: bool = False
|
99 |
+
net_autoenc_stochastic: bool = False
|
100 |
+
net_latent_activation: Activation = Activation.silu
|
101 |
+
net_latent_channel_mult: Tuple[int] = (1, 2, 4)
|
102 |
+
net_latent_condition_bias: float = 0
|
103 |
+
net_latent_dropout: float = 0
|
104 |
+
net_latent_layers: int = None
|
105 |
+
net_latent_net_last_act: Activation = Activation.none
|
106 |
+
net_latent_net_type: LatentNetType = LatentNetType.none
|
107 |
+
net_latent_num_hid_channels: int = 1024
|
108 |
+
net_latent_num_time_layers: int = 2
|
109 |
+
net_latent_skip_layers: Tuple[int] = None
|
110 |
+
net_latent_time_emb_channels: int = 64
|
111 |
+
net_latent_use_norm: bool = False
|
112 |
+
net_latent_time_last_act: bool = False
|
113 |
+
net_num_res_blocks: int = 2
|
114 |
+
# number of resblocks for the UNET
|
115 |
+
net_num_input_res_blocks: int = None
|
116 |
+
net_enc_num_cls: int = None
|
117 |
+
num_workers: int = 4
|
118 |
+
parallel: bool = False
|
119 |
+
postfix: str = ''
|
120 |
+
sample_size: int = 64
|
121 |
+
sample_every_samples: int = 20_000
|
122 |
+
save_every_samples: int = 100_000
|
123 |
+
style_ch: int = 512
|
124 |
+
T_eval: int = 1_000
|
125 |
+
T_sampler: str = 'uniform'
|
126 |
+
T: int = 1_000
|
127 |
+
total_samples: int = 10_000_000
|
128 |
+
warmup: int = 0
|
129 |
+
pretrain: PretrainConfig = None
|
130 |
+
continue_from: PretrainConfig = None
|
131 |
+
eval_programs: Tuple[str] = None
|
132 |
+
# if present load the checkpoint from this path instead
|
133 |
+
eval_path: str = None
|
134 |
+
base_dir: str = 'checkpoints'
|
135 |
+
use_cache_dataset: bool = False
|
136 |
+
data_cache_dir: str = os.path.expanduser('~/cache')
|
137 |
+
work_cache_dir: str = os.path.expanduser('~/mycache')
|
138 |
+
# to be overridden
|
139 |
+
name: str = ''
|
140 |
+
|
141 |
+
def __post_init__(self):
|
142 |
+
self.batch_size_eval = self.batch_size_eval or self.batch_size
|
143 |
+
self.data_val_name = self.data_val_name or self.data_name
|
144 |
+
|
145 |
+
def scale_up_gpus(self, num_gpus, num_nodes=1):
|
146 |
+
self.eval_ema_every_samples *= num_gpus * num_nodes
|
147 |
+
self.eval_every_samples *= num_gpus * num_nodes
|
148 |
+
self.sample_every_samples *= num_gpus * num_nodes
|
149 |
+
self.batch_size *= num_gpus * num_nodes
|
150 |
+
self.batch_size_eval *= num_gpus * num_nodes
|
151 |
+
return self
|
152 |
+
|
153 |
+
@property
|
154 |
+
def batch_size_effective(self):
|
155 |
+
return self.batch_size * self.accum_batches
|
156 |
+
|
157 |
+
@property
|
158 |
+
def fid_cache(self):
|
159 |
+
# we try to use the local dirs to reduce the load over network drives
|
160 |
+
# hopefully, this would reduce the disconnection problems with sshfs
|
161 |
+
return f'{self.work_cache_dir}/eval_images/{self.data_name}_size{self.img_size}_{self.eval_num_images}'
|
162 |
+
|
163 |
+
@property
|
164 |
+
def data_path(self):
|
165 |
+
# may use the cache dir
|
166 |
+
path = data_paths[self.data_name]
|
167 |
+
if self.use_cache_dataset and path is not None:
|
168 |
+
path = use_cached_dataset_path(
|
169 |
+
path, f'{self.data_cache_dir}/{self.data_name}')
|
170 |
+
return path
|
171 |
+
|
172 |
+
@property
|
173 |
+
def logdir(self):
|
174 |
+
return f'{self.base_dir}/{self.name}'
|
175 |
+
|
176 |
+
@property
|
177 |
+
def generate_dir(self):
|
178 |
+
# we try to use the local dirs to reduce the load over network drives
|
179 |
+
# hopefully, this would reduce the disconnection problems with sshfs
|
180 |
+
return f'{self.work_cache_dir}/gen_images/{self.name}'
|
181 |
+
|
182 |
+
def _make_diffusion_conf(self, T=None):
|
183 |
+
if self.diffusion_type == 'beatgans':
|
184 |
+
# can use T < self.T for evaluation
|
185 |
+
# follows the guided-diffusion repo conventions
|
186 |
+
# t's are evenly spaced
|
187 |
+
if self.beatgans_gen_type == GenerativeType.ddpm:
|
188 |
+
section_counts = [T]
|
189 |
+
elif self.beatgans_gen_type == GenerativeType.ddim:
|
190 |
+
section_counts = f'ddim{T}'
|
191 |
+
else:
|
192 |
+
raise NotImplementedError()
|
193 |
+
|
194 |
+
return SpacedDiffusionBeatGansConfig(
|
195 |
+
gen_type=self.beatgans_gen_type,
|
196 |
+
model_type=self.model_type,
|
197 |
+
betas=get_named_beta_schedule(self.beta_scheduler, self.T),
|
198 |
+
model_mean_type=self.beatgans_model_mean_type,
|
199 |
+
model_var_type=self.beatgans_model_var_type,
|
200 |
+
loss_type=self.beatgans_loss_type,
|
201 |
+
rescale_timesteps=self.beatgans_rescale_timesteps,
|
202 |
+
use_timesteps=space_timesteps(num_timesteps=self.T,
|
203 |
+
section_counts=section_counts),
|
204 |
+
fp16=self.fp16,
|
205 |
+
)
|
206 |
+
else:
|
207 |
+
raise NotImplementedError()
|
208 |
+
|
209 |
+
def _make_latent_diffusion_conf(self, T=None):
|
210 |
+
# can use T < self.T for evaluation
|
211 |
+
# follows the guided-diffusion repo conventions
|
212 |
+
# t's are evenly spaced
|
213 |
+
if self.latent_gen_type == GenerativeType.ddpm:
|
214 |
+
section_counts = [T]
|
215 |
+
elif self.latent_gen_type == GenerativeType.ddim:
|
216 |
+
section_counts = f'ddim{T}'
|
217 |
+
else:
|
218 |
+
raise NotImplementedError()
|
219 |
+
|
220 |
+
return SpacedDiffusionBeatGansConfig(
|
221 |
+
train_pred_xstart_detach=self.train_pred_xstart_detach,
|
222 |
+
gen_type=self.latent_gen_type,
|
223 |
+
# latent's model is always ddpm
|
224 |
+
model_type=ModelType.ddpm,
|
225 |
+
# latent shares the beta scheduler and full T
|
226 |
+
betas=get_named_beta_schedule(self.latent_beta_scheduler, self.T),
|
227 |
+
model_mean_type=self.latent_model_mean_type,
|
228 |
+
model_var_type=self.latent_model_var_type,
|
229 |
+
loss_type=self.latent_loss_type,
|
230 |
+
rescale_timesteps=self.latent_rescale_timesteps,
|
231 |
+
use_timesteps=space_timesteps(num_timesteps=self.T,
|
232 |
+
section_counts=section_counts),
|
233 |
+
fp16=self.fp16,
|
234 |
+
)
|
235 |
+
|
236 |
+
@property
|
237 |
+
def model_out_channels(self):
|
238 |
+
return 3
|
239 |
+
|
240 |
+
def make_T_sampler(self):
|
241 |
+
if self.T_sampler == 'uniform':
|
242 |
+
return UniformSampler(self.T)
|
243 |
+
else:
|
244 |
+
raise NotImplementedError()
|
245 |
+
|
246 |
+
def make_diffusion_conf(self):
|
247 |
+
return self._make_diffusion_conf(self.T)
|
248 |
+
|
249 |
+
def make_eval_diffusion_conf(self):
|
250 |
+
return self._make_diffusion_conf(T=self.T_eval)
|
251 |
+
|
252 |
+
def make_latent_diffusion_conf(self):
|
253 |
+
return self._make_latent_diffusion_conf(T=self.T)
|
254 |
+
|
255 |
+
def make_latent_eval_diffusion_conf(self):
|
256 |
+
# latent can have different eval T
|
257 |
+
return self._make_latent_diffusion_conf(T=self.latent_T_eval)
|
258 |
+
|
259 |
+
def make_dataset(self, path=None, **kwargs):
|
260 |
+
return LatentDataLoader(self.window_size,
|
261 |
+
self.frame_jpgs,
|
262 |
+
self.lmd_feats_prefix,
|
263 |
+
self.audio_prefix,
|
264 |
+
self.raw_audio_prefix,
|
265 |
+
self.motion_latents_prefix,
|
266 |
+
self.pose_prefix,
|
267 |
+
self.db_name,
|
268 |
+
audio_hz=self.audio_hz)
|
269 |
+
|
270 |
+
def make_loader(self,
|
271 |
+
dataset,
|
272 |
+
shuffle: bool,
|
273 |
+
num_worker: bool = None,
|
274 |
+
drop_last: bool = True,
|
275 |
+
batch_size: int = None,
|
276 |
+
parallel: bool = False):
|
277 |
+
if parallel and distributed.is_initialized():
|
278 |
+
# drop last to make sure that there is no added special indexes
|
279 |
+
sampler = DistributedSampler(dataset,
|
280 |
+
shuffle=shuffle,
|
281 |
+
drop_last=True)
|
282 |
+
else:
|
283 |
+
sampler = None
|
284 |
+
return DataLoader(
|
285 |
+
dataset,
|
286 |
+
batch_size=batch_size or self.batch_size,
|
287 |
+
sampler=sampler,
|
288 |
+
# with sampler, use the sample instead of this option
|
289 |
+
shuffle=False if sampler else shuffle,
|
290 |
+
num_workers=num_worker or self.num_workers,
|
291 |
+
pin_memory=True,
|
292 |
+
drop_last=drop_last,
|
293 |
+
multiprocessing_context=get_context('fork'),
|
294 |
+
)
|
295 |
+
|
296 |
+
def make_model_conf(self):
|
297 |
+
if self.model_name == ModelName.beatgans_ddpm:
|
298 |
+
self.model_type = ModelType.ddpm
|
299 |
+
self.model_conf = BeatGANsUNetConfig(
|
300 |
+
attention_resolutions=self.net_attn,
|
301 |
+
channel_mult=self.net_ch_mult,
|
302 |
+
conv_resample=True,
|
303 |
+
dims=2,
|
304 |
+
dropout=self.dropout,
|
305 |
+
embed_channels=self.net_beatgans_embed_channels,
|
306 |
+
image_size=self.img_size,
|
307 |
+
in_channels=3,
|
308 |
+
model_channels=self.net_ch,
|
309 |
+
num_classes=None,
|
310 |
+
num_head_channels=-1,
|
311 |
+
num_heads_upsample=-1,
|
312 |
+
num_heads=self.net_beatgans_attn_head,
|
313 |
+
num_res_blocks=self.net_num_res_blocks,
|
314 |
+
num_input_res_blocks=self.net_num_input_res_blocks,
|
315 |
+
out_channels=self.model_out_channels,
|
316 |
+
resblock_updown=self.net_resblock_updown,
|
317 |
+
use_checkpoint=self.net_beatgans_gradient_checkpoint,
|
318 |
+
use_new_attention_order=False,
|
319 |
+
resnet_two_cond=self.net_beatgans_resnet_two_cond,
|
320 |
+
resnet_use_zero_module=self.
|
321 |
+
net_beatgans_resnet_use_zero_module,
|
322 |
+
)
|
323 |
+
elif self.model_name in [
|
324 |
+
ModelName.beatgans_autoenc,
|
325 |
+
]:
|
326 |
+
cls = BeatGANsAutoencConfig
|
327 |
+
# supports both autoenc and vaeddpm
|
328 |
+
if self.model_name == ModelName.beatgans_autoenc:
|
329 |
+
self.model_type = ModelType.autoencoder
|
330 |
+
else:
|
331 |
+
raise NotImplementedError()
|
332 |
+
|
333 |
+
if self.net_latent_net_type == LatentNetType.none:
|
334 |
+
latent_net_conf = None
|
335 |
+
elif self.net_latent_net_type == LatentNetType.skip:
|
336 |
+
latent_net_conf = MLPSkipNetConfig(
|
337 |
+
num_channels=self.style_ch,
|
338 |
+
skip_layers=self.net_latent_skip_layers,
|
339 |
+
num_hid_channels=self.net_latent_num_hid_channels,
|
340 |
+
num_layers=self.net_latent_layers,
|
341 |
+
num_time_emb_channels=self.net_latent_time_emb_channels,
|
342 |
+
activation=self.net_latent_activation,
|
343 |
+
use_norm=self.net_latent_use_norm,
|
344 |
+
condition_bias=self.net_latent_condition_bias,
|
345 |
+
dropout=self.net_latent_dropout,
|
346 |
+
last_act=self.net_latent_net_last_act,
|
347 |
+
num_time_layers=self.net_latent_num_time_layers,
|
348 |
+
time_last_act=self.net_latent_time_last_act,
|
349 |
+
)
|
350 |
+
else:
|
351 |
+
raise NotImplementedError()
|
352 |
+
|
353 |
+
self.model_conf = cls(
|
354 |
+
attention_resolutions=self.net_attn,
|
355 |
+
channel_mult=self.net_ch_mult,
|
356 |
+
conv_resample=True,
|
357 |
+
dims=2,
|
358 |
+
dropout=self.dropout,
|
359 |
+
embed_channels=self.net_beatgans_embed_channels,
|
360 |
+
enc_out_channels=self.style_ch,
|
361 |
+
enc_pool=self.net_enc_pool,
|
362 |
+
enc_num_res_block=self.net_enc_num_res_blocks,
|
363 |
+
enc_channel_mult=self.net_enc_channel_mult,
|
364 |
+
enc_grad_checkpoint=self.net_enc_grad_checkpoint,
|
365 |
+
enc_attn_resolutions=self.net_enc_attn,
|
366 |
+
image_size=self.img_size,
|
367 |
+
in_channels=3,
|
368 |
+
model_channels=self.net_ch,
|
369 |
+
num_classes=None,
|
370 |
+
num_head_channels=-1,
|
371 |
+
num_heads_upsample=-1,
|
372 |
+
num_heads=self.net_beatgans_attn_head,
|
373 |
+
num_res_blocks=self.net_num_res_blocks,
|
374 |
+
num_input_res_blocks=self.net_num_input_res_blocks,
|
375 |
+
out_channels=self.model_out_channels,
|
376 |
+
resblock_updown=self.net_resblock_updown,
|
377 |
+
use_checkpoint=self.net_beatgans_gradient_checkpoint,
|
378 |
+
use_new_attention_order=False,
|
379 |
+
resnet_two_cond=self.net_beatgans_resnet_two_cond,
|
380 |
+
resnet_use_zero_module=self.
|
381 |
+
net_beatgans_resnet_use_zero_module,
|
382 |
+
latent_net_conf=latent_net_conf,
|
383 |
+
resnet_cond_channels=self.net_beatgans_resnet_cond_channels,
|
384 |
+
)
|
385 |
+
else:
|
386 |
+
raise NotImplementedError(self.model_name)
|
387 |
+
|
388 |
+
return self.model_conf
|
config_base.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
from copy import deepcopy
|
4 |
+
from dataclasses import dataclass
|
5 |
+
|
6 |
+
|
7 |
+
@dataclass
|
8 |
+
class BaseConfig:
|
9 |
+
def clone(self):
|
10 |
+
return deepcopy(self)
|
11 |
+
|
12 |
+
def inherit(self, another):
|
13 |
+
"""inherit common keys from a given config"""
|
14 |
+
common_keys = set(self.__dict__.keys()) & set(another.__dict__.keys())
|
15 |
+
for k in common_keys:
|
16 |
+
setattr(self, k, getattr(another, k))
|
17 |
+
|
18 |
+
def propagate(self):
|
19 |
+
"""push down the configuration to all members"""
|
20 |
+
for k, v in self.__dict__.items():
|
21 |
+
if isinstance(v, BaseConfig):
|
22 |
+
v.inherit(self)
|
23 |
+
v.propagate()
|
24 |
+
|
25 |
+
def save(self, save_path):
|
26 |
+
"""save config to json file"""
|
27 |
+
dirname = os.path.dirname(save_path)
|
28 |
+
if not os.path.exists(dirname):
|
29 |
+
os.makedirs(dirname)
|
30 |
+
conf = self.as_dict_jsonable()
|
31 |
+
with open(save_path, 'w') as f:
|
32 |
+
json.dump(conf, f)
|
33 |
+
|
34 |
+
def load(self, load_path):
|
35 |
+
"""load json config"""
|
36 |
+
with open(load_path) as f:
|
37 |
+
conf = json.load(f)
|
38 |
+
self.from_dict(conf)
|
39 |
+
|
40 |
+
def from_dict(self, dict, strict=False):
|
41 |
+
for k, v in dict.items():
|
42 |
+
if not hasattr(self, k):
|
43 |
+
if strict:
|
44 |
+
raise ValueError(f"loading extra '{k}'")
|
45 |
+
else:
|
46 |
+
print(f"loading extra '{k}'")
|
47 |
+
continue
|
48 |
+
if isinstance(self.__dict__[k], BaseConfig):
|
49 |
+
self.__dict__[k].from_dict(v)
|
50 |
+
else:
|
51 |
+
self.__dict__[k] = v
|
52 |
+
|
53 |
+
def as_dict_jsonable(self):
|
54 |
+
conf = {}
|
55 |
+
for k, v in self.__dict__.items():
|
56 |
+
if isinstance(v, BaseConfig):
|
57 |
+
conf[k] = v.as_dict_jsonable()
|
58 |
+
else:
|
59 |
+
if jsonable(v):
|
60 |
+
conf[k] = v
|
61 |
+
else:
|
62 |
+
# ignore not jsonable
|
63 |
+
pass
|
64 |
+
return conf
|
65 |
+
|
66 |
+
|
67 |
+
def jsonable(x):
|
68 |
+
try:
|
69 |
+
json.dumps(x)
|
70 |
+
return True
|
71 |
+
except TypeError:
|
72 |
+
return False
|
dataset.py
ADDED
@@ -0,0 +1,218 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import librosa
|
3 |
+
from PIL import Image
|
4 |
+
from torchvision import transforms
|
5 |
+
import python_speech_features
|
6 |
+
import random
|
7 |
+
import os
|
8 |
+
import numpy as np
|
9 |
+
from tqdm import tqdm
|
10 |
+
import torchvision
|
11 |
+
import torchvision.transforms as transforms
|
12 |
+
from PIL import Image
|
13 |
+
|
14 |
+
class LatentDataLoader(object):
|
15 |
+
|
16 |
+
def __init__(
|
17 |
+
self,
|
18 |
+
window_size,
|
19 |
+
frame_jpgs,
|
20 |
+
lmd_feats_prefix,
|
21 |
+
audio_prefix,
|
22 |
+
raw_audio_prefix,
|
23 |
+
motion_latents_prefix,
|
24 |
+
pose_prefix,
|
25 |
+
db_name,
|
26 |
+
video_fps=25,
|
27 |
+
audio_hz=50,
|
28 |
+
size=256,
|
29 |
+
mfcc_mode=False,
|
30 |
+
):
|
31 |
+
self.window_size = window_size
|
32 |
+
self.lmd_feats_prefix = lmd_feats_prefix
|
33 |
+
self.audio_prefix = audio_prefix
|
34 |
+
self.pose_prefix = pose_prefix
|
35 |
+
self.video_fps = video_fps
|
36 |
+
self.audio_hz = audio_hz
|
37 |
+
self.db_name = db_name
|
38 |
+
self.raw_audio_prefix = raw_audio_prefix
|
39 |
+
self.mfcc_mode = mfcc_mode
|
40 |
+
|
41 |
+
|
42 |
+
self.transform = torchvision.transforms.Compose([
|
43 |
+
transforms.Resize((size, size)),
|
44 |
+
transforms.ToTensor(),
|
45 |
+
transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))]
|
46 |
+
)
|
47 |
+
|
48 |
+
self.data = []
|
49 |
+
for db_name in [ 'VoxCeleb2', 'HDTF' ]:
|
50 |
+
db_png_path = os.path.join(frame_jpgs, db_name)
|
51 |
+
for clip_name in tqdm(os.listdir(db_png_path)):
|
52 |
+
|
53 |
+
item_dict = dict()
|
54 |
+
item_dict['clip_name'] = clip_name
|
55 |
+
item_dict['frame_count'] = len(list(os.listdir(os.path.join(frame_jpgs, db_name, clip_name))))
|
56 |
+
item_dict['hubert_path'] = os.path.join(audio_prefix, db_name, clip_name +".npy")
|
57 |
+
item_dict['wav_path'] = os.path.join(raw_audio_prefix, db_name, clip_name +".wav")
|
58 |
+
|
59 |
+
item_dict['yaw_pitch_roll_path'] = os.path.join(pose_prefix, db_name, 'raw_videos_pose_yaw_pitch_roll', clip_name +".npy")
|
60 |
+
if not os.path.exists(item_dict['yaw_pitch_roll_path']):
|
61 |
+
print(f"{db_name}'s {clip_name} miss yaw_pitch_roll_path")
|
62 |
+
continue
|
63 |
+
|
64 |
+
item_dict['yaw_pitch_roll'] = np.load(item_dict['yaw_pitch_roll_path'])
|
65 |
+
item_dict['yaw_pitch_roll'] = np.clip(item_dict['yaw_pitch_roll'], -90, 90) / 90.0
|
66 |
+
|
67 |
+
if not os.path.exists(item_dict['wav_path']):
|
68 |
+
print(f"{db_name}'s {clip_name} miss wav_path")
|
69 |
+
continue
|
70 |
+
|
71 |
+
if not os.path.exists(item_dict['hubert_path']):
|
72 |
+
print(f"{db_name}'s {clip_name} miss hubert_path")
|
73 |
+
continue
|
74 |
+
|
75 |
+
|
76 |
+
if self.mfcc_mode:
|
77 |
+
wav, sr = librosa.load(item_dict['wav_path'], sr=16000)
|
78 |
+
input_values = python_speech_features.mfcc(signal=wav,samplerate=sr,numcep=13,winlen=0.025,winstep=0.01)
|
79 |
+
d_mfcc_feat = python_speech_features.base.delta(input_values, 1)
|
80 |
+
d_mfcc_feat2 = python_speech_features.base.delta(input_values, 2)
|
81 |
+
input_values = np.hstack((input_values, d_mfcc_feat, d_mfcc_feat2))
|
82 |
+
item_dict['hubert_obj'] = input_values
|
83 |
+
else:
|
84 |
+
item_dict['hubert_obj'] = np.load(item_dict['hubert_path'], mmap_mode='r')
|
85 |
+
item_dict['lmd_path'] = os.path.join(lmd_feats_prefix, db_name, clip_name +".txt")
|
86 |
+
item_dict['lmd_obj_full'] = self.read_landmark_info(item_dict['lmd_path'], upper_face=False)
|
87 |
+
|
88 |
+
motion_start_path = os.path.join(motion_latents_prefix, db_name, 'motions', clip_name +".npy")
|
89 |
+
motion_direction_path = os.path.join(motion_latents_prefix, db_name, 'directions', clip_name +".npy")
|
90 |
+
|
91 |
+
if not os.path.exists(motion_start_path):
|
92 |
+
print(f"{db_name}'s {clip_name} miss motion_start_path")
|
93 |
+
continue
|
94 |
+
if not os.path.exists(motion_direction_path):
|
95 |
+
print(f"{db_name}'s {clip_name} miss motion_direction_path")
|
96 |
+
continue
|
97 |
+
|
98 |
+
item_dict['motion_start_obj'] = np.load(motion_start_path)
|
99 |
+
item_dict['motion_direction_obj'] = np.load(motion_direction_path)
|
100 |
+
|
101 |
+
if self.mfcc_mode:
|
102 |
+
min_len = min(
|
103 |
+
item_dict['lmd_obj_full'].shape[0],
|
104 |
+
item_dict['yaw_pitch_roll'].shape[0],
|
105 |
+
item_dict['motion_start_obj'].shape[0],
|
106 |
+
item_dict['motion_direction_obj'].shape[0],
|
107 |
+
int(item_dict['hubert_obj'].shape[0]/4),
|
108 |
+
item_dict['frame_count']
|
109 |
+
)
|
110 |
+
item_dict['frame_count'] = min_len
|
111 |
+
item_dict['hubert_obj'] = item_dict['hubert_obj'][:min_len*4,:]
|
112 |
+
else:
|
113 |
+
min_len = min(
|
114 |
+
item_dict['lmd_obj_full'].shape[0],
|
115 |
+
item_dict['yaw_pitch_roll'].shape[0],
|
116 |
+
item_dict['motion_start_obj'].shape[0],
|
117 |
+
item_dict['motion_direction_obj'].shape[0],
|
118 |
+
int(item_dict['hubert_obj'].shape[1]/2),
|
119 |
+
item_dict['frame_count']
|
120 |
+
)
|
121 |
+
|
122 |
+
item_dict['frame_count'] = min_len
|
123 |
+
item_dict['hubert_obj'] = item_dict['hubert_obj'][:, :min_len*2, :]
|
124 |
+
|
125 |
+
if min_len < self.window_size * self.video_fps + 5:
|
126 |
+
continue
|
127 |
+
|
128 |
+
print('Db count:', len(self.data))
|
129 |
+
|
130 |
+
def get_single_image(self, image_path):
|
131 |
+
img_source = Image.open(image_path).convert('RGB')
|
132 |
+
img_source = self.transform(img_source)
|
133 |
+
return img_source
|
134 |
+
|
135 |
+
def get_multiple_ranges(self, lists, multi_ranges):
|
136 |
+
# Ensure that multi_ranges is a list of tuples
|
137 |
+
if not all(isinstance(item, tuple) and len(item) == 2 for item in multi_ranges):
|
138 |
+
raise ValueError("multi_ranges must be a list of (start, end) tuples with exactly two elements each")
|
139 |
+
extracted_elements = [lists[start:end] for start, end in multi_ranges]
|
140 |
+
flat_list = [item for sublist in extracted_elements for item in sublist]
|
141 |
+
return flat_list
|
142 |
+
|
143 |
+
|
144 |
+
def read_landmark_info(self, lmd_path, upper_face=True):
|
145 |
+
with open(lmd_path, 'r') as file:
|
146 |
+
lmd_lines = file.readlines()
|
147 |
+
lmd_lines.sort()
|
148 |
+
|
149 |
+
total_lmd_obj = []
|
150 |
+
for i, line in enumerate(lmd_lines):
|
151 |
+
# Split the coordinates and filter out any empty strings
|
152 |
+
coords = [c for c in line.strip().split(' ') if c]
|
153 |
+
coords = coords[1:] # do not include the file name in the first row
|
154 |
+
lmd_obj = []
|
155 |
+
if upper_face:
|
156 |
+
# Ensure that the coordinates are parsed as integers
|
157 |
+
for coord_pair in self.get_multiple_ranges(coords, [(0, 3), (14, 27), (36, 48)]): # 28个
|
158 |
+
x, y = coord_pair.split('_')
|
159 |
+
lmd_obj.append((int(x)/512, int(y)/512))
|
160 |
+
else:
|
161 |
+
for coord_pair in coords:
|
162 |
+
x, y = coord_pair.split('_')
|
163 |
+
lmd_obj.append((int(x)/512, int(y)/512))
|
164 |
+
total_lmd_obj.append(lmd_obj)
|
165 |
+
|
166 |
+
return np.array(total_lmd_obj, dtype=np.float32)
|
167 |
+
|
168 |
+
def calculate_face_height(self, landmarks):
|
169 |
+
forehead_center = (landmarks[ :, 21, :] + landmarks[:, 22, :]) / 2
|
170 |
+
chin_bottom = landmarks[:, 8, :]
|
171 |
+
distances = np.linalg.norm(forehead_center - chin_bottom, axis=1, keepdims=True)
|
172 |
+
return distances
|
173 |
+
|
174 |
+
def __getitem__(self, index):
|
175 |
+
|
176 |
+
data_item = self.data[index]
|
177 |
+
hubert_obj = data_item['hubert_obj']
|
178 |
+
frame_count = data_item['frame_count']
|
179 |
+
lmd_obj_full = data_item['lmd_obj_full']
|
180 |
+
yaw_pitch_roll = data_item['yaw_pitch_roll']
|
181 |
+
motion_start_obj = data_item['motion_start_obj']
|
182 |
+
motion_direction_obj = data_item['motion_direction_obj']
|
183 |
+
|
184 |
+
frame_end_index = random.randint(self.window_size * self.video_fps + 1, frame_count - 1)
|
185 |
+
frame_start_index = frame_end_index - self.window_size * self.video_fps
|
186 |
+
frame_hint_index = frame_start_index - 1
|
187 |
+
|
188 |
+
audio_start_index = int(frame_start_index * (self.audio_hz / self.video_fps))
|
189 |
+
audio_end_index = int(frame_end_index * (self.audio_hz / self.video_fps))
|
190 |
+
|
191 |
+
if self.mfcc_mode:
|
192 |
+
audio_feats = hubert_obj[audio_start_index:audio_end_index, :]
|
193 |
+
else:
|
194 |
+
audio_feats = hubert_obj[:, audio_start_index:audio_end_index, :]
|
195 |
+
|
196 |
+
lmd_obj_full = lmd_obj_full[frame_hint_index:frame_end_index, :]
|
197 |
+
|
198 |
+
yaw_pitch_roll = yaw_pitch_roll[frame_start_index:frame_end_index, :]
|
199 |
+
|
200 |
+
motion_start = motion_start_obj[frame_hint_index]
|
201 |
+
motion_direction_start = motion_direction_obj[frame_hint_index]
|
202 |
+
motion_direction = motion_direction_obj[frame_start_index:frame_end_index, :]
|
203 |
+
|
204 |
+
|
205 |
+
|
206 |
+
return {
|
207 |
+
'motion_start': motion_start,
|
208 |
+
'motion_direction': motion_direction,
|
209 |
+
'audio_feats': audio_feats,
|
210 |
+
'face_location': lmd_obj_full[1:, 30, 0], # '1:' means taking the first frame as the driven frame. '30' is the noise location, '0' means x coordinate
|
211 |
+
'face_scale': self.calculate_face_height(lmd_obj_full[1:,:,:]),
|
212 |
+
'yaw_pitch_roll': yaw_pitch_roll,
|
213 |
+
'motion_direction_start': motion_direction_start,
|
214 |
+
}
|
215 |
+
|
216 |
+
def __len__(self):
|
217 |
+
return len(self.data)
|
218 |
+
|
dataset_util.py
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import shutil
|
2 |
+
import os
|
3 |
+
from dist_utils import *
|
4 |
+
|
5 |
+
|
6 |
+
def use_cached_dataset_path(source_path, cache_path):
|
7 |
+
if get_rank() == 0:
|
8 |
+
if not os.path.exists(cache_path):
|
9 |
+
# shutil.rmtree(cache_path)
|
10 |
+
print(f'copying the data: {source_path} to {cache_path}')
|
11 |
+
shutil.copytree(source_path, cache_path)
|
12 |
+
barrier()
|
13 |
+
return cache_path
|
demo.py
ADDED
@@ -0,0 +1,295 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from LIA_Model import LIA_Model
|
2 |
+
import torch
|
3 |
+
import numpy as np
|
4 |
+
import os
|
5 |
+
from PIL import Image
|
6 |
+
from tqdm import tqdm
|
7 |
+
import argparse
|
8 |
+
import numpy as np
|
9 |
+
from torchvision import transforms
|
10 |
+
from templates import *
|
11 |
+
import argparse
|
12 |
+
import shutil
|
13 |
+
from moviepy.editor import *
|
14 |
+
import librosa
|
15 |
+
import python_speech_features
|
16 |
+
import importlib.util
|
17 |
+
import time
|
18 |
+
|
19 |
+
def check_package_installed(package_name):
|
20 |
+
package_spec = importlib.util.find_spec(package_name)
|
21 |
+
if package_spec is None:
|
22 |
+
print(f"{package_name} is not installed.")
|
23 |
+
return False
|
24 |
+
else:
|
25 |
+
print(f"{package_name} is installed.")
|
26 |
+
return True
|
27 |
+
|
28 |
+
def frames_to_video(input_path, audio_path, output_path, fps=25):
|
29 |
+
image_files = [os.path.join(input_path, img) for img in sorted(os.listdir(input_path))]
|
30 |
+
clips = [ImageClip(m).set_duration(1/fps) for m in image_files]
|
31 |
+
video = concatenate_videoclips(clips, method="compose")
|
32 |
+
|
33 |
+
audio = AudioFileClip(audio_path)
|
34 |
+
final_video = video.set_audio(audio)
|
35 |
+
final_video.write_videofile(output_path, fps=fps, codec='libx264', audio_codec='aac')
|
36 |
+
|
37 |
+
def load_image(filename, size):
|
38 |
+
img = Image.open(filename).convert('RGB')
|
39 |
+
img = img.resize((size, size))
|
40 |
+
img = np.asarray(img)
|
41 |
+
img = np.transpose(img, (2, 0, 1)) # 3 x 256 x 256
|
42 |
+
return img / 255.0
|
43 |
+
|
44 |
+
def img_preprocessing(img_path, size):
|
45 |
+
img = load_image(img_path, size) # [0, 1]
|
46 |
+
img = torch.from_numpy(img).unsqueeze(0).float() # [0, 1]
|
47 |
+
imgs_norm = (img - 0.5) * 2.0 # [-1, 1]
|
48 |
+
return imgs_norm
|
49 |
+
|
50 |
+
def saved_image(img_tensor, img_path):
|
51 |
+
toPIL = transforms.ToPILImage()
|
52 |
+
img = toPIL(img_tensor.detach().cpu().squeeze(0)) # 使用squeeze(0)来移除批次维度
|
53 |
+
img.save(img_path)
|
54 |
+
|
55 |
+
def main(args):
|
56 |
+
frames_result_saved_path = os.path.join(args.result_path, 'frames')
|
57 |
+
os.makedirs(frames_result_saved_path, exist_ok=True)
|
58 |
+
test_image_name = os.path.splitext(os.path.basename(args.test_image_path))[0]
|
59 |
+
audio_name = os.path.splitext(os.path.basename(args.test_audio_path))[0]
|
60 |
+
predicted_video_256_path = os.path.join(args.result_path, f'{test_image_name}-{audio_name}.mp4')
|
61 |
+
predicted_video_512_path = os.path.join(args.result_path, f'{test_image_name}-{audio_name}_SR.mp4')
|
62 |
+
|
63 |
+
#======Loading Stage 1 model=========
|
64 |
+
lia = LIA_Model(motion_dim=args.motion_dim, fusion_type='weighted_sum')
|
65 |
+
lia.load_lightning_model(args.stage1_checkpoint_path)
|
66 |
+
lia.to(args.device)
|
67 |
+
#============================
|
68 |
+
|
69 |
+
conf = ffhq256_autoenc()
|
70 |
+
conf.seed = args.seed
|
71 |
+
conf.decoder_layers = args.decoder_layers
|
72 |
+
conf.infer_type = args.infer_type
|
73 |
+
conf.motion_dim = args.motion_dim
|
74 |
+
|
75 |
+
if args.infer_type == 'mfcc_full_control':
|
76 |
+
conf.face_location=True
|
77 |
+
conf.face_scale=True
|
78 |
+
conf.mfcc = True
|
79 |
+
|
80 |
+
elif args.infer_type == 'mfcc_pose_only':
|
81 |
+
conf.face_location=False
|
82 |
+
conf.face_scale=False
|
83 |
+
conf.mfcc = True
|
84 |
+
|
85 |
+
elif args.infer_type == 'hubert_pose_only':
|
86 |
+
conf.face_location=False
|
87 |
+
conf.face_scale=False
|
88 |
+
conf.mfcc = False
|
89 |
+
|
90 |
+
elif args.infer_type == 'hubert_audio_only':
|
91 |
+
conf.face_location=False
|
92 |
+
conf.face_scale=False
|
93 |
+
conf.mfcc = False
|
94 |
+
|
95 |
+
elif args.infer_type == 'hubert_full_control':
|
96 |
+
conf.face_location=True
|
97 |
+
conf.face_scale=True
|
98 |
+
conf.mfcc = False
|
99 |
+
|
100 |
+
else:
|
101 |
+
print('Type NOT Found!')
|
102 |
+
exit(0)
|
103 |
+
|
104 |
+
if not os.path.exists(args.test_image_path):
|
105 |
+
print(f'{args.test_image_path} does not exist!')
|
106 |
+
exit(0)
|
107 |
+
|
108 |
+
if not os.path.exists(args.test_audio_path):
|
109 |
+
print(f'{args.test_audio_path} does not exist!')
|
110 |
+
exit(0)
|
111 |
+
|
112 |
+
img_source = img_preprocessing(args.test_image_path, args.image_size).to(args.device)
|
113 |
+
one_shot_lia_start, one_shot_lia_direction, feats = lia.get_start_direction_code(img_source, img_source, img_source, img_source)
|
114 |
+
|
115 |
+
|
116 |
+
#======Loading Stage 2 model=========
|
117 |
+
model = LitModel(conf)
|
118 |
+
state = torch.load(args.stage2_checkpoint_path, map_location='cpu')
|
119 |
+
model.load_state_dict(state, strict=True)
|
120 |
+
model.ema_model.eval()
|
121 |
+
model.ema_model.to(args.device);
|
122 |
+
#=================================
|
123 |
+
|
124 |
+
|
125 |
+
#======Audio Input=========
|
126 |
+
if conf.infer_type.startswith('mfcc'):
|
127 |
+
# MFCC features
|
128 |
+
wav, sr = librosa.load(args.test_audio_path, sr=16000)
|
129 |
+
input_values = python_speech_features.mfcc(signal=wav, samplerate=sr, numcep=13, winlen=0.025, winstep=0.01)
|
130 |
+
d_mfcc_feat = python_speech_features.base.delta(input_values, 1)
|
131 |
+
d_mfcc_feat2 = python_speech_features.base.delta(input_values, 2)
|
132 |
+
audio_driven_obj = np.hstack((input_values, d_mfcc_feat, d_mfcc_feat2))
|
133 |
+
frame_start, frame_end = 0, int(audio_driven_obj.shape[0]/4)
|
134 |
+
audio_start, audio_end = int(frame_start * 4), int(frame_end * 4) # The video frame is fixed to 25 hz and the audio is fixed to 100 hz
|
135 |
+
|
136 |
+
audio_driven = torch.Tensor(audio_driven_obj[audio_start:audio_end,:]).unsqueeze(0).float().to(args.device)
|
137 |
+
|
138 |
+
elif conf.infer_type.startswith('hubert'):
|
139 |
+
# Hubert features
|
140 |
+
if not os.path.exists(args.test_hubert_path):
|
141 |
+
|
142 |
+
if not check_package_installed('transformers'):
|
143 |
+
print('Please install transformers module first.')
|
144 |
+
exit(0)
|
145 |
+
hubert_model_path = 'ckpts/chinese-hubert-large'
|
146 |
+
if not os.path.exists(hubert_model_path):
|
147 |
+
print('Please download the hubert weight into the ckpts path first.')
|
148 |
+
exit(0)
|
149 |
+
print('You did not extract the audio features in advance, extracting online now, which will increase processing delay')
|
150 |
+
|
151 |
+
start_time = time.time()
|
152 |
+
|
153 |
+
# load hubert model
|
154 |
+
from transformers import Wav2Vec2FeatureExtractor, HubertModel
|
155 |
+
audio_model = HubertModel.from_pretrained(hubert_model_path).to(args.device)
|
156 |
+
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(hubert_model_path)
|
157 |
+
audio_model.feature_extractor._freeze_parameters()
|
158 |
+
audio_model.eval()
|
159 |
+
|
160 |
+
# hubert model forward pass
|
161 |
+
audio, sr = librosa.load(args.test_audio_path, sr=16000)
|
162 |
+
input_values = feature_extractor(audio, sampling_rate=16000, padding=True, do_normalize=True, return_tensors="pt").input_values
|
163 |
+
input_values = input_values.to(args.device)
|
164 |
+
ws_feats = []
|
165 |
+
with torch.no_grad():
|
166 |
+
outputs = audio_model(input_values, output_hidden_states=True)
|
167 |
+
for i in range(len(outputs.hidden_states)):
|
168 |
+
ws_feats.append(outputs.hidden_states[i].detach().cpu().numpy())
|
169 |
+
ws_feat_obj = np.array(ws_feats)
|
170 |
+
ws_feat_obj = np.squeeze(ws_feat_obj, 1)
|
171 |
+
ws_feat_obj = np.pad(ws_feat_obj, ((0, 0), (0, 1), (0, 0)), 'edge') # align the audio length with video frame
|
172 |
+
|
173 |
+
execution_time = time.time() - start_time
|
174 |
+
print(f"Extraction Audio Feature: {execution_time:.2f} Seconds")
|
175 |
+
|
176 |
+
audio_driven_obj = ws_feat_obj
|
177 |
+
else:
|
178 |
+
print(f'Using audio feature from path: {args.test_hubert_path}')
|
179 |
+
audio_driven_obj = np.load(args.test_hubert_path)
|
180 |
+
|
181 |
+
frame_start, frame_end = 0, int(audio_driven_obj.shape[1]/2)
|
182 |
+
audio_start, audio_end = int(frame_start * 2), int(frame_end * 2) # The video frame is fixed to 25 hz and the audio is fixed to 50 hz
|
183 |
+
|
184 |
+
audio_driven = torch.Tensor(audio_driven_obj[:,audio_start:audio_end,:]).unsqueeze(0).float().to(args.device)
|
185 |
+
#============================
|
186 |
+
|
187 |
+
# Diffusion Noise
|
188 |
+
noisyT = th.randn((1,frame_end, args.motion_dim)).to(args.device)
|
189 |
+
|
190 |
+
#======Inputs for Attribute Control=========
|
191 |
+
if os.path.exists(args.pose_driven_path):
|
192 |
+
pose_obj = np.load(args.pose_driven_path)
|
193 |
+
|
194 |
+
|
195 |
+
if len(pose_obj.shape) != 2:
|
196 |
+
print('please check your pose information. The shape must be like (T, 3).')
|
197 |
+
exit(0)
|
198 |
+
if pose_obj.shape[1] != 3:
|
199 |
+
print('please check your pose information. The shape must be like (T, 3).')
|
200 |
+
exit(0)
|
201 |
+
|
202 |
+
if pose_obj.shape[0] >= frame_end:
|
203 |
+
pose_obj = pose_obj[:frame_end,:]
|
204 |
+
else:
|
205 |
+
padding = np.tile(pose_obj[-1, :], (frame_end - pose_obj.shape[0], 1))
|
206 |
+
pose_obj = np.vstack((pose_obj, padding))
|
207 |
+
|
208 |
+
pose_signal = torch.Tensor(pose_obj).unsqueeze(0).to(args.device) / 90 # 90 is for normalization here
|
209 |
+
else:
|
210 |
+
yaw_signal = torch.zeros(1, frame_end, 1).to(args.device) + args.pose_yaw
|
211 |
+
pitch_signal = torch.zeros(1, frame_end, 1).to(args.device) + args.pose_pitch
|
212 |
+
roll_signal = torch.zeros(1, frame_end, 1).to(args.device) + args.pose_roll
|
213 |
+
pose_signal = torch.cat((yaw_signal, pitch_signal, roll_signal), dim=-1)
|
214 |
+
|
215 |
+
pose_signal = torch.clamp(pose_signal, -1, 1)
|
216 |
+
|
217 |
+
face_location_signal = torch.zeros(1, frame_end, 1).to(args.device) + args.face_location
|
218 |
+
face_scae_signal = torch.zeros(1, frame_end, 1).to(args.device) + args.face_scale
|
219 |
+
#===========================================
|
220 |
+
|
221 |
+
start_time = time.time()
|
222 |
+
|
223 |
+
#======Diffusion Denosing Process=========
|
224 |
+
generated_directions = model.render(one_shot_lia_start, one_shot_lia_direction, audio_driven, face_location_signal, face_scae_signal, pose_signal, noisyT, args.step_T, control_flag=args.control_flag)
|
225 |
+
#=========================================
|
226 |
+
|
227 |
+
execution_time = time.time() - start_time
|
228 |
+
print(f"Motion Diffusion Model: {execution_time:.2f} Seconds")
|
229 |
+
|
230 |
+
generated_directions = generated_directions.detach().cpu().numpy()
|
231 |
+
|
232 |
+
start_time = time.time()
|
233 |
+
#======Rendering images frame-by-frame=========
|
234 |
+
for pred_index in tqdm(range(generated_directions.shape[1])):
|
235 |
+
ori_img_recon = lia.render(one_shot_lia_start, torch.Tensor(generated_directions[:,pred_index,:]).to(args.device), feats)
|
236 |
+
ori_img_recon = ori_img_recon.clamp(-1, 1)
|
237 |
+
wav_pred = (ori_img_recon.detach() + 1) / 2
|
238 |
+
saved_image(wav_pred, os.path.join(frames_result_saved_path, "%06d.png"%(pred_index)))
|
239 |
+
#==============================================
|
240 |
+
|
241 |
+
execution_time = time.time() - start_time
|
242 |
+
print(f"Renderer Model: {execution_time:.2f} Seconds")
|
243 |
+
|
244 |
+
frames_to_video(frames_result_saved_path, args.test_audio_path, predicted_video_256_path)
|
245 |
+
|
246 |
+
shutil.rmtree(frames_result_saved_path)
|
247 |
+
|
248 |
+
|
249 |
+
# Enhancer
|
250 |
+
# Code is modified from https://github.com/OpenTalker/SadTalker/blob/cd4c0465ae0b54a6f85af57f5c65fec9fe23e7f8/src/utils/face_enhancer.py#L26
|
251 |
+
|
252 |
+
if args.face_sr and check_package_installed('gfpgan'):
|
253 |
+
from face_sr.face_enhancer import enhancer_list
|
254 |
+
import imageio
|
255 |
+
|
256 |
+
# Super-resolution
|
257 |
+
imageio.mimsave(predicted_video_512_path+'.tmp.mp4', enhancer_list(predicted_video_256_path, method='gfpgan', bg_upsampler=None), fps=float(25))
|
258 |
+
|
259 |
+
# Merge audio and video
|
260 |
+
video_clip = VideoFileClip(predicted_video_512_path+'.tmp.mp4')
|
261 |
+
audio_clip = AudioFileClip(predicted_video_256_path)
|
262 |
+
final_clip = video_clip.set_audio(audio_clip)
|
263 |
+
final_clip.write_videofile(predicted_video_512_path, codec='libx264', audio_codec='aac')
|
264 |
+
|
265 |
+
os.remove(predicted_video_512_path+'.tmp.mp4')
|
266 |
+
|
267 |
+
if __name__ == '__main__':
|
268 |
+
parser = argparse.ArgumentParser()
|
269 |
+
parser.add_argument('--infer_type', type=str, default='mfcc_pose_only', help='mfcc_pose_only or mfcc_full_control')
|
270 |
+
parser.add_argument('--test_image_path', type=str, default='./test_demos/portraits/monalisa.jpg', help='Path to the portrait')
|
271 |
+
parser.add_argument('--test_audio_path', type=str, default='./test_demos/audios/english_female.wav', help='Path to the driven audio')
|
272 |
+
parser.add_argument('--test_hubert_path', type=str, default='./test_demos/audios_hubert/english_female.npy', help='Path to the driven audio(hubert type). Not needed for MFCC')
|
273 |
+
parser.add_argument('--result_path', type=str, default='./results/', help='Type of inference')
|
274 |
+
parser.add_argument('--stage1_checkpoint_path', type=str, default='./ckpts/stage1.ckpt', help='Path to the checkpoint of Stage1')
|
275 |
+
parser.add_argument('--stage2_checkpoint_path', type=str, default='./ckpts/pose_only.ckpt', help='Path to the checkpoint of Stage2')
|
276 |
+
parser.add_argument('--seed', type=int, default=0, help='seed for generations')
|
277 |
+
parser.add_argument('--control_flag', action='store_true', help='Whether to use control signal or not')
|
278 |
+
parser.add_argument('--pose_yaw', type=float, default=0.25, help='range from -1 to 1 (-90 ~ 90 angles)')
|
279 |
+
parser.add_argument('--pose_pitch', type=float, default=0, help='range from -1 to 1 (-90 ~ 90 angles)')
|
280 |
+
parser.add_argument('--pose_roll', type=float, default=0, help='range from -1 to 1 (-90 ~ 90 angles)')
|
281 |
+
parser.add_argument('--face_location', type=float, default=0.5, help='range from 0 to 1 (from left to right)')
|
282 |
+
parser.add_argument('--pose_driven_path', type=str, default='xxx', help='path to pose numpy, shape is (T, 3). You can check the following code https://github.com/liutaocode/talking_face_preprocessing to extract the yaw, pitch and roll.')
|
283 |
+
parser.add_argument('--face_scale', type=float, default=0.5, help='range from 0 to 1 (from small to large)')
|
284 |
+
parser.add_argument('--step_T', type=int, default=50, help='Step T for diffusion denoising process')
|
285 |
+
parser.add_argument('--image_size', type=int, default=256, help='Size of the image. Do not change.')
|
286 |
+
parser.add_argument('--device', type=str, default='cuda:0', help='Device for computation')
|
287 |
+
parser.add_argument('--motion_dim', type=int, default=20, help='Dimension of motion. Do not change.')
|
288 |
+
parser.add_argument('--decoder_layers', type=int, default=2, help='Layer number for the conformer.')
|
289 |
+
parser.add_argument('--face_sr', action='store_true', help='Face super-resolution (Optional). Please install GFPGAN first')
|
290 |
+
|
291 |
+
|
292 |
+
|
293 |
+
args = parser.parse_args()
|
294 |
+
|
295 |
+
main(args)
|
diffusion/__init__.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Union
|
2 |
+
|
3 |
+
from .diffusion import SpacedDiffusionBeatGans, SpacedDiffusionBeatGansConfig
|
4 |
+
|
5 |
+
Sampler = Union[SpacedDiffusionBeatGans]
|
6 |
+
SamplerConfig = Union[SpacedDiffusionBeatGansConfig]
|
diffusion/base.py
ADDED
@@ -0,0 +1,1128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
This code started out as a PyTorch port of Ho et al's diffusion models:
|
3 |
+
https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/diffusion_utils_2.py
|
4 |
+
|
5 |
+
Docstrings have been added, as well as DDIM sampling and a new collection of beta schedules.
|
6 |
+
"""
|
7 |
+
|
8 |
+
from model.unet_autoenc import AutoencReturn
|
9 |
+
from config_base import BaseConfig
|
10 |
+
import enum
|
11 |
+
import math
|
12 |
+
|
13 |
+
import numpy as np
|
14 |
+
import torch as th
|
15 |
+
from model import *
|
16 |
+
from model.nn import mean_flat
|
17 |
+
from typing import NamedTuple, Tuple
|
18 |
+
from choices import *
|
19 |
+
from torch.cuda.amp import autocast
|
20 |
+
import torch.nn.functional as F
|
21 |
+
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
|
25 |
+
@dataclass
|
26 |
+
class GaussianDiffusionBeatGansConfig(BaseConfig):
|
27 |
+
gen_type: GenerativeType
|
28 |
+
betas: Tuple[float]
|
29 |
+
model_type: ModelType
|
30 |
+
model_mean_type: ModelMeanType
|
31 |
+
model_var_type: ModelVarType
|
32 |
+
loss_type: LossType
|
33 |
+
rescale_timesteps: bool
|
34 |
+
fp16: bool
|
35 |
+
train_pred_xstart_detach: bool = True
|
36 |
+
|
37 |
+
def make_sampler(self):
|
38 |
+
return GaussianDiffusionBeatGans(self)
|
39 |
+
|
40 |
+
|
41 |
+
class GaussianDiffusionBeatGans:
|
42 |
+
"""
|
43 |
+
Utilities for training and sampling diffusion models.
|
44 |
+
|
45 |
+
Ported directly from here, and then adapted over time to further experimentation.
|
46 |
+
https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/diffusion_utils_2.py#L42
|
47 |
+
|
48 |
+
:param betas: a 1-D numpy array of betas for each diffusion timestep,
|
49 |
+
starting at T and going to 1.
|
50 |
+
:param model_mean_type: a ModelMeanType determining what the model outputs.
|
51 |
+
:param model_var_type: a ModelVarType determining how variance is output.
|
52 |
+
:param loss_type: a LossType determining the loss function to use.
|
53 |
+
:param rescale_timesteps: if True, pass floating point timesteps into the
|
54 |
+
model so that they are always scaled like in the
|
55 |
+
original paper (0 to 1000).
|
56 |
+
"""
|
57 |
+
def __init__(self, conf: GaussianDiffusionBeatGansConfig):
|
58 |
+
self.conf = conf
|
59 |
+
self.model_mean_type = conf.model_mean_type
|
60 |
+
self.model_var_type = conf.model_var_type
|
61 |
+
self.loss_type = conf.loss_type
|
62 |
+
self.rescale_timesteps = conf.rescale_timesteps
|
63 |
+
|
64 |
+
# Use float64 for accuracy.
|
65 |
+
betas = np.array(conf.betas, dtype=np.float64)
|
66 |
+
self.betas = betas
|
67 |
+
assert len(betas.shape) == 1, "betas must be 1-D"
|
68 |
+
assert (betas > 0).all() and (betas <= 1).all()
|
69 |
+
|
70 |
+
self.num_timesteps = int(betas.shape[0])
|
71 |
+
|
72 |
+
alphas = 1.0 - betas
|
73 |
+
self.alphas_cumprod = np.cumprod(alphas, axis=0)
|
74 |
+
self.alphas_cumprod_prev = np.append(1.0, self.alphas_cumprod[:-1])
|
75 |
+
self.alphas_cumprod_next = np.append(self.alphas_cumprod[1:], 0.0)
|
76 |
+
assert self.alphas_cumprod_prev.shape == (self.num_timesteps, )
|
77 |
+
|
78 |
+
# calculations for diffusion q(x_t | x_{t-1}) and others
|
79 |
+
self.sqrt_alphas_cumprod = np.sqrt(self.alphas_cumprod)
|
80 |
+
self.sqrt_one_minus_alphas_cumprod = np.sqrt(1.0 - self.alphas_cumprod)
|
81 |
+
self.log_one_minus_alphas_cumprod = np.log(1.0 - self.alphas_cumprod)
|
82 |
+
self.sqrt_recip_alphas_cumprod = np.sqrt(1.0 / self.alphas_cumprod)
|
83 |
+
self.sqrt_recipm1_alphas_cumprod = np.sqrt(1.0 / self.alphas_cumprod -
|
84 |
+
1)
|
85 |
+
|
86 |
+
# calculations for posterior q(x_{t-1} | x_t, x_0)
|
87 |
+
self.posterior_variance = (betas * (1.0 - self.alphas_cumprod_prev) /
|
88 |
+
(1.0 - self.alphas_cumprod))
|
89 |
+
# log calculation clipped because the posterior variance is 0 at the
|
90 |
+
# beginning of the diffusion chain.
|
91 |
+
self.posterior_log_variance_clipped = np.log(
|
92 |
+
np.append(self.posterior_variance[1], self.posterior_variance[1:]))
|
93 |
+
self.posterior_mean_coef1 = (betas *
|
94 |
+
np.sqrt(self.alphas_cumprod_prev) /
|
95 |
+
(1.0 - self.alphas_cumprod))
|
96 |
+
self.posterior_mean_coef2 = ((1.0 - self.alphas_cumprod_prev) *
|
97 |
+
np.sqrt(alphas) /
|
98 |
+
(1.0 - self.alphas_cumprod))
|
99 |
+
|
100 |
+
def training_losses(self,
|
101 |
+
model,
|
102 |
+
motion_direction_start: th.Tensor,
|
103 |
+
motion_target: th.Tensor,
|
104 |
+
motion_start: th.Tensor,
|
105 |
+
audio_feats: th.Tensor,
|
106 |
+
face_location: th.Tensor,
|
107 |
+
face_scale: th.Tensor,
|
108 |
+
yaw_pitch_roll: th.Tensor,
|
109 |
+
t: th.Tensor,
|
110 |
+
model_kwargs=None,
|
111 |
+
noise: th.Tensor = None):
|
112 |
+
"""
|
113 |
+
Compute training losses for a single timestep.
|
114 |
+
|
115 |
+
:param model: the model to evaluate loss on.
|
116 |
+
:param x_start: the [N x C x ...] tensor of inputs.
|
117 |
+
:param t: a batch of timestep indices.
|
118 |
+
:param model_kwargs: if not None, a dict of extra keyword arguments to
|
119 |
+
pass to the model. This can be used for conditioning.
|
120 |
+
:param noise: if specified, the specific Gaussian noise to try to remove.
|
121 |
+
:return: a dict with the key "loss" containing a tensor of shape [N].
|
122 |
+
Some mean or variance settings may also have other keys.
|
123 |
+
"""
|
124 |
+
if model_kwargs is None:
|
125 |
+
model_kwargs = {}
|
126 |
+
if noise is None:
|
127 |
+
noise = th.randn_like(motion_target)
|
128 |
+
|
129 |
+
x_t = self.q_sample(motion_target, t, noise=noise)
|
130 |
+
|
131 |
+
terms = {'x_t': x_t}
|
132 |
+
|
133 |
+
if self.loss_type in [
|
134 |
+
LossType.mse,
|
135 |
+
LossType.l1,
|
136 |
+
]:
|
137 |
+
with autocast(self.conf.fp16):
|
138 |
+
# x_t is static wrt. to the diffusion process
|
139 |
+
predicted_direction, predicted_location, predicted_scale, predicted_pose = model.forward(motion_start,
|
140 |
+
motion_direction_start,
|
141 |
+
audio_feats,
|
142 |
+
face_location,
|
143 |
+
face_scale,
|
144 |
+
yaw_pitch_roll,
|
145 |
+
x_t.detach(),
|
146 |
+
self._scale_timesteps(t),
|
147 |
+
control_flag=False)
|
148 |
+
|
149 |
+
|
150 |
+
target_types = {
|
151 |
+
ModelMeanType.eps: noise,
|
152 |
+
}
|
153 |
+
target = target_types[self.model_mean_type]
|
154 |
+
assert predicted_direction.shape == target.shape == motion_target.shape
|
155 |
+
|
156 |
+
if self.loss_type == LossType.mse:
|
157 |
+
if self.model_mean_type == ModelMeanType.eps:
|
158 |
+
|
159 |
+
direction_loss = mean_flat((target - predicted_direction)**2)
|
160 |
+
# import pdb;pdb.set_trace()
|
161 |
+
location_loss = mean_flat((face_location.unsqueeze(-1) - predicted_location)**2)
|
162 |
+
scale_loss = mean_flat((face_scale - predicted_scale)**2)
|
163 |
+
pose_loss = mean_flat((yaw_pitch_roll - predicted_pose)**2)
|
164 |
+
|
165 |
+
terms["mse"] = direction_loss + location_loss + scale_loss + pose_loss
|
166 |
+
|
167 |
+
else:
|
168 |
+
raise NotImplementedError()
|
169 |
+
elif self.loss_type == LossType.l1:
|
170 |
+
# (n, c, h, w) => (n, )
|
171 |
+
terms["mse"] = mean_flat((target - predicted_direction).abs())
|
172 |
+
else:
|
173 |
+
raise NotImplementedError()
|
174 |
+
|
175 |
+
if "vb" in terms:
|
176 |
+
# if learning the variance also use the vlb loss
|
177 |
+
terms["loss"] = terms["mse"] + terms["vb"]
|
178 |
+
else:
|
179 |
+
terms["loss"] = terms["mse"]
|
180 |
+
else:
|
181 |
+
raise NotImplementedError(self.loss_type)
|
182 |
+
|
183 |
+
|
184 |
+
return terms
|
185 |
+
|
186 |
+
def sample(self,
|
187 |
+
model: Model,
|
188 |
+
shape=None,
|
189 |
+
noise=None,
|
190 |
+
cond=None,
|
191 |
+
x_start=None,
|
192 |
+
clip_denoised=True,
|
193 |
+
model_kwargs=None,
|
194 |
+
progress=False):
|
195 |
+
"""
|
196 |
+
Args:
|
197 |
+
x_start: given for the autoencoder
|
198 |
+
"""
|
199 |
+
if model_kwargs is None:
|
200 |
+
model_kwargs = {}
|
201 |
+
if self.conf.model_type.has_autoenc():
|
202 |
+
model_kwargs['x_start'] = x_start
|
203 |
+
model_kwargs['cond'] = cond
|
204 |
+
|
205 |
+
if self.conf.gen_type == GenerativeType.ddpm:
|
206 |
+
return self.p_sample_loop(model,
|
207 |
+
shape=shape,
|
208 |
+
noise=noise,
|
209 |
+
clip_denoised=clip_denoised,
|
210 |
+
model_kwargs=model_kwargs,
|
211 |
+
progress=progress)
|
212 |
+
elif self.conf.gen_type == GenerativeType.ddim:
|
213 |
+
return self.ddim_sample_loop(model,
|
214 |
+
shape=shape,
|
215 |
+
noise=noise,
|
216 |
+
clip_denoised=clip_denoised,
|
217 |
+
model_kwargs=model_kwargs,
|
218 |
+
progress=progress)
|
219 |
+
else:
|
220 |
+
raise NotImplementedError()
|
221 |
+
|
222 |
+
def q_mean_variance(self, x_start, t):
|
223 |
+
"""
|
224 |
+
Get the distribution q(x_t | x_0).
|
225 |
+
|
226 |
+
:param x_start: the [N x C x ...] tensor of noiseless inputs.
|
227 |
+
:param t: the number of diffusion steps (minus 1). Here, 0 means one step.
|
228 |
+
:return: A tuple (mean, variance, log_variance), all of x_start's shape.
|
229 |
+
"""
|
230 |
+
mean = (
|
231 |
+
_extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) *
|
232 |
+
x_start)
|
233 |
+
variance = _extract_into_tensor(1.0 - self.alphas_cumprod, t,
|
234 |
+
x_start.shape)
|
235 |
+
log_variance = _extract_into_tensor(self.log_one_minus_alphas_cumprod,
|
236 |
+
t, x_start.shape)
|
237 |
+
return mean, variance, log_variance
|
238 |
+
|
239 |
+
def q_sample(self, x_start, t, noise=None):
|
240 |
+
"""
|
241 |
+
Diffuse the data for a given number of diffusion steps.
|
242 |
+
|
243 |
+
In other words, sample from q(x_t | x_0).
|
244 |
+
|
245 |
+
:param x_start: the initial data batch.
|
246 |
+
:param t: the number of diffusion steps (minus 1). Here, 0 means one step.
|
247 |
+
:param noise: if specified, the split-out normal noise.
|
248 |
+
:return: A noisy version of x_start.
|
249 |
+
"""
|
250 |
+
if noise is None:
|
251 |
+
noise = th.randn_like(x_start)
|
252 |
+
assert noise.shape == x_start.shape
|
253 |
+
return (
|
254 |
+
_extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) *
|
255 |
+
x_start + _extract_into_tensor(self.sqrt_one_minus_alphas_cumprod,
|
256 |
+
t, x_start.shape) * noise)
|
257 |
+
|
258 |
+
def q_posterior_mean_variance(self, x_start, x_t, t):
|
259 |
+
"""
|
260 |
+
Compute the mean and variance of the diffusion posterior:
|
261 |
+
|
262 |
+
q(x_{t-1} | x_t, x_0)
|
263 |
+
|
264 |
+
"""
|
265 |
+
assert x_start.shape == x_t.shape
|
266 |
+
posterior_mean = (
|
267 |
+
_extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) *
|
268 |
+
x_start +
|
269 |
+
_extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) *
|
270 |
+
x_t)
|
271 |
+
posterior_variance = _extract_into_tensor(self.posterior_variance, t,
|
272 |
+
x_t.shape)
|
273 |
+
posterior_log_variance_clipped = _extract_into_tensor(
|
274 |
+
self.posterior_log_variance_clipped, t, x_t.shape)
|
275 |
+
assert (posterior_mean.shape[0] == posterior_variance.shape[0] ==
|
276 |
+
posterior_log_variance_clipped.shape[0] == x_start.shape[0])
|
277 |
+
return posterior_mean, posterior_variance, posterior_log_variance_clipped
|
278 |
+
|
279 |
+
def p_mean_variance(self,
|
280 |
+
model,
|
281 |
+
x,
|
282 |
+
t,
|
283 |
+
clip_denoised=True,
|
284 |
+
denoised_fn=None,
|
285 |
+
model_kwargs=None):
|
286 |
+
"""
|
287 |
+
Apply the model to get p(x_{t-1} | x_t), as well as a prediction of
|
288 |
+
the initial x, x_0.
|
289 |
+
|
290 |
+
:param model: the model, which takes a signal and a batch of timesteps
|
291 |
+
as input.
|
292 |
+
:param x: the [N x C x ...] tensor at time t.
|
293 |
+
:param t: a 1-D Tensor of timesteps.
|
294 |
+
:param clip_denoised: if True, clip the denoised signal into [-1, 1].
|
295 |
+
:param denoised_fn: if not None, a function which applies to the
|
296 |
+
x_start prediction before it is used to sample. Applies before
|
297 |
+
clip_denoised.
|
298 |
+
:param model_kwargs: if not None, a dict of extra keyword arguments to
|
299 |
+
pass to the model. This can be used for conditioning.
|
300 |
+
:return: a dict with the following keys:
|
301 |
+
- 'mean': the model mean output.
|
302 |
+
- 'variance': the model variance output.
|
303 |
+
- 'log_variance': the log of 'variance'.
|
304 |
+
- 'pred_xstart': the prediction for x_0.
|
305 |
+
"""
|
306 |
+
if model_kwargs is None:
|
307 |
+
model_kwargs = {}
|
308 |
+
|
309 |
+
motion_start = model_kwargs['start']
|
310 |
+
audio_feats = model_kwargs['audio_driven']
|
311 |
+
face_location = model_kwargs['face_location']
|
312 |
+
face_scale = model_kwargs['face_scale']
|
313 |
+
yaw_pitch_roll = model_kwargs['yaw_pitch_roll']
|
314 |
+
motion_direction_start = model_kwargs['motion_direction_start']
|
315 |
+
control_flag = model_kwargs['control_flag']
|
316 |
+
|
317 |
+
B, C = x.shape[:2]
|
318 |
+
assert t.shape == (B, )
|
319 |
+
with autocast(self.conf.fp16):
|
320 |
+
model_forward, _, _, _ = model.forward(motion_start,
|
321 |
+
motion_direction_start,
|
322 |
+
audio_feats,
|
323 |
+
face_location,
|
324 |
+
face_scale,
|
325 |
+
yaw_pitch_roll,
|
326 |
+
x,
|
327 |
+
self._scale_timesteps(t),
|
328 |
+
control_flag)
|
329 |
+
model_output = model_forward
|
330 |
+
|
331 |
+
if self.model_var_type in [
|
332 |
+
ModelVarType.fixed_large, ModelVarType.fixed_small
|
333 |
+
]:
|
334 |
+
model_variance, model_log_variance = {
|
335 |
+
# for fixedlarge, we set the initial (log-)variance like so
|
336 |
+
# to get a better decoder log likelihood.
|
337 |
+
ModelVarType.fixed_large: (
|
338 |
+
np.append(self.posterior_variance[1], self.betas[1:]),
|
339 |
+
np.log(
|
340 |
+
np.append(self.posterior_variance[1], self.betas[1:])),
|
341 |
+
),
|
342 |
+
ModelVarType.fixed_small: (
|
343 |
+
self.posterior_variance,
|
344 |
+
self.posterior_log_variance_clipped,
|
345 |
+
),
|
346 |
+
}[self.model_var_type]
|
347 |
+
model_variance = _extract_into_tensor(model_variance, t, x.shape)
|
348 |
+
model_log_variance = _extract_into_tensor(model_log_variance, t,
|
349 |
+
x.shape)
|
350 |
+
|
351 |
+
def process_xstart(x):
|
352 |
+
if denoised_fn is not None:
|
353 |
+
x = denoised_fn(x)
|
354 |
+
if clip_denoised:
|
355 |
+
return x.clamp(-1, 1)
|
356 |
+
return x
|
357 |
+
|
358 |
+
if self.model_mean_type in [
|
359 |
+
ModelMeanType.eps,
|
360 |
+
]:
|
361 |
+
if self.model_mean_type == ModelMeanType.eps:
|
362 |
+
pred_xstart = process_xstart(
|
363 |
+
self._predict_xstart_from_eps(x_t=x, t=t,
|
364 |
+
eps=model_output))
|
365 |
+
else:
|
366 |
+
raise NotImplementedError()
|
367 |
+
model_mean, _, _ = self.q_posterior_mean_variance(
|
368 |
+
x_start=pred_xstart, x_t=x, t=t)
|
369 |
+
else:
|
370 |
+
raise NotImplementedError(self.model_mean_type)
|
371 |
+
|
372 |
+
assert (model_mean.shape == model_log_variance.shape ==
|
373 |
+
pred_xstart.shape == x.shape)
|
374 |
+
return {
|
375 |
+
"mean": model_mean,
|
376 |
+
"variance": model_variance,
|
377 |
+
"log_variance": model_log_variance,
|
378 |
+
"pred_xstart": pred_xstart,
|
379 |
+
'model_forward': model_forward,
|
380 |
+
}
|
381 |
+
|
382 |
+
def _predict_xstart_from_eps(self, x_t, t, eps):
|
383 |
+
assert x_t.shape == eps.shape
|
384 |
+
return (_extract_into_tensor(self.sqrt_recip_alphas_cumprod, t,
|
385 |
+
x_t.shape) * x_t -
|
386 |
+
_extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t,
|
387 |
+
x_t.shape) * eps)
|
388 |
+
|
389 |
+
def _predict_xstart_from_xprev(self, x_t, t, xprev):
|
390 |
+
assert x_t.shape == xprev.shape
|
391 |
+
return ( # (xprev - coef2*x_t) / coef1
|
392 |
+
_extract_into_tensor(1.0 / self.posterior_mean_coef1, t, x_t.shape)
|
393 |
+
* xprev - _extract_into_tensor(
|
394 |
+
self.posterior_mean_coef2 / self.posterior_mean_coef1, t,
|
395 |
+
x_t.shape) * x_t)
|
396 |
+
|
397 |
+
def _predict_xstart_from_scaled_xstart(self, t, scaled_xstart):
|
398 |
+
return scaled_xstart * _extract_into_tensor(
|
399 |
+
self.sqrt_recip_alphas_cumprod, t, scaled_xstart.shape)
|
400 |
+
|
401 |
+
def _predict_eps_from_xstart(self, x_t, t, pred_xstart):
|
402 |
+
return (_extract_into_tensor(self.sqrt_recip_alphas_cumprod, t,
|
403 |
+
x_t.shape) * x_t -
|
404 |
+
pred_xstart) / _extract_into_tensor(
|
405 |
+
self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
|
406 |
+
|
407 |
+
def _predict_eps_from_scaled_xstart(self, x_t, t, scaled_xstart):
|
408 |
+
"""
|
409 |
+
Args:
|
410 |
+
scaled_xstart: is supposed to be sqrt(alphacum) * x_0
|
411 |
+
"""
|
412 |
+
# 1 / sqrt(1-alphabar) * (x_t - scaled xstart)
|
413 |
+
return (x_t - scaled_xstart) / _extract_into_tensor(
|
414 |
+
self.sqrt_one_minus_alphas_cumprod, t, x_t.shape)
|
415 |
+
|
416 |
+
def _scale_timesteps(self, t):
|
417 |
+
if self.rescale_timesteps:
|
418 |
+
# scale t to be maxed out at 1000 steps
|
419 |
+
return t.float() * (1000.0 / self.num_timesteps)
|
420 |
+
return t
|
421 |
+
|
422 |
+
def condition_mean(self, cond_fn, p_mean_var, x, t, model_kwargs=None):
|
423 |
+
"""
|
424 |
+
Compute the mean for the previous step, given a function cond_fn that
|
425 |
+
computes the gradient of a conditional log probability with respect to
|
426 |
+
x. In particular, cond_fn computes grad(log(p(y|x))), and we want to
|
427 |
+
condition on y.
|
428 |
+
|
429 |
+
This uses the conditioning strategy from Sohl-Dickstein et al. (2015).
|
430 |
+
"""
|
431 |
+
gradient = cond_fn(x, self._scale_timesteps(t), **model_kwargs)
|
432 |
+
new_mean = (p_mean_var["mean"].float() +
|
433 |
+
p_mean_var["variance"] * gradient.float())
|
434 |
+
return new_mean
|
435 |
+
|
436 |
+
def condition_score(self, cond_fn, p_mean_var, x, t, model_kwargs=None):
|
437 |
+
"""
|
438 |
+
Compute what the p_mean_variance output would have been, should the
|
439 |
+
model's score function be conditioned by cond_fn.
|
440 |
+
|
441 |
+
See condition_mean() for details on cond_fn.
|
442 |
+
|
443 |
+
Unlike condition_mean(), this instead uses the conditioning strategy
|
444 |
+
from Song et al (2020).
|
445 |
+
"""
|
446 |
+
alpha_bar = _extract_into_tensor(self.alphas_cumprod, t, x.shape)
|
447 |
+
|
448 |
+
eps = self._predict_eps_from_xstart(x, t, p_mean_var["pred_xstart"])
|
449 |
+
eps = eps - (1 - alpha_bar).sqrt() * cond_fn(
|
450 |
+
x, self._scale_timesteps(t), **model_kwargs)
|
451 |
+
|
452 |
+
out = p_mean_var.copy()
|
453 |
+
out["pred_xstart"] = self._predict_xstart_from_eps(x, t, eps)
|
454 |
+
out["mean"], _, _ = self.q_posterior_mean_variance(
|
455 |
+
x_start=out["pred_xstart"], x_t=x, t=t)
|
456 |
+
return out
|
457 |
+
|
458 |
+
def p_sample(
|
459 |
+
self,
|
460 |
+
model: Model,
|
461 |
+
x,
|
462 |
+
t,
|
463 |
+
clip_denoised=True,
|
464 |
+
denoised_fn=None,
|
465 |
+
cond_fn=None,
|
466 |
+
model_kwargs=None,
|
467 |
+
):
|
468 |
+
"""
|
469 |
+
Sample x_{t-1} from the model at the given timestep.
|
470 |
+
|
471 |
+
:param model: the model to sample from.
|
472 |
+
:param x: the current tensor at x_{t-1}.
|
473 |
+
:param t: the value of t, starting at 0 for the first diffusion step.
|
474 |
+
:param clip_denoised: if True, clip the x_start prediction to [-1, 1].
|
475 |
+
:param denoised_fn: if not None, a function which applies to the
|
476 |
+
x_start prediction before it is used to sample.
|
477 |
+
:param cond_fn: if not None, this is a gradient function that acts
|
478 |
+
similarly to the model.
|
479 |
+
:param model_kwargs: if not None, a dict of extra keyword arguments to
|
480 |
+
pass to the model. This can be used for conditioning.
|
481 |
+
:return: a dict containing the following keys:
|
482 |
+
- 'sample': a random sample from the model.
|
483 |
+
- 'pred_xstart': a prediction of x_0.
|
484 |
+
"""
|
485 |
+
out = self.p_mean_variance(
|
486 |
+
model,
|
487 |
+
x,
|
488 |
+
t,
|
489 |
+
clip_denoised=clip_denoised,
|
490 |
+
denoised_fn=denoised_fn,
|
491 |
+
model_kwargs=model_kwargs,
|
492 |
+
)
|
493 |
+
noise = th.randn_like(x)
|
494 |
+
nonzero_mask = ((t != 0).float().view(-1, *([1] * (len(x.shape) - 1)))
|
495 |
+
) # no noise when t == 0
|
496 |
+
if cond_fn is not None:
|
497 |
+
out["mean"] = self.condition_mean(cond_fn,
|
498 |
+
out,
|
499 |
+
x,
|
500 |
+
t,
|
501 |
+
model_kwargs=model_kwargs)
|
502 |
+
sample = out["mean"] + nonzero_mask * th.exp(
|
503 |
+
0.5 * out["log_variance"]) * noise
|
504 |
+
return {"sample": sample, "pred_xstart": out["pred_xstart"]}
|
505 |
+
|
506 |
+
def p_sample_loop(
|
507 |
+
self,
|
508 |
+
model: Model,
|
509 |
+
shape=None,
|
510 |
+
noise=None,
|
511 |
+
clip_denoised=True,
|
512 |
+
denoised_fn=None,
|
513 |
+
cond_fn=None,
|
514 |
+
model_kwargs=None,
|
515 |
+
device=None,
|
516 |
+
progress=False,
|
517 |
+
):
|
518 |
+
"""
|
519 |
+
Generate samples from the model.
|
520 |
+
|
521 |
+
:param model: the model module.
|
522 |
+
:param shape: the shape of the samples, (N, C, H, W).
|
523 |
+
:param noise: if specified, the noise from the encoder to sample.
|
524 |
+
Should be of the same shape as `shape`.
|
525 |
+
:param clip_denoised: if True, clip x_start predictions to [-1, 1].
|
526 |
+
:param denoised_fn: if not None, a function which applies to the
|
527 |
+
x_start prediction before it is used to sample.
|
528 |
+
:param cond_fn: if not None, this is a gradient function that acts
|
529 |
+
similarly to the model.
|
530 |
+
:param model_kwargs: if not None, a dict of extra keyword arguments to
|
531 |
+
pass to the model. This can be used for conditioning.
|
532 |
+
:param device: if specified, the device to create the samples on.
|
533 |
+
If not specified, use a model parameter's device.
|
534 |
+
:param progress: if True, show a tqdm progress bar.
|
535 |
+
:return: a non-differentiable batch of samples.
|
536 |
+
"""
|
537 |
+
final = None
|
538 |
+
for sample in self.p_sample_loop_progressive(
|
539 |
+
model,
|
540 |
+
shape,
|
541 |
+
noise=noise,
|
542 |
+
clip_denoised=clip_denoised,
|
543 |
+
denoised_fn=denoised_fn,
|
544 |
+
cond_fn=cond_fn,
|
545 |
+
model_kwargs=model_kwargs,
|
546 |
+
device=device,
|
547 |
+
progress=progress,
|
548 |
+
):
|
549 |
+
final = sample
|
550 |
+
return final["sample"]
|
551 |
+
|
552 |
+
def p_sample_loop_progressive(
|
553 |
+
self,
|
554 |
+
model: Model,
|
555 |
+
shape=None,
|
556 |
+
noise=None,
|
557 |
+
clip_denoised=True,
|
558 |
+
denoised_fn=None,
|
559 |
+
cond_fn=None,
|
560 |
+
model_kwargs=None,
|
561 |
+
device=None,
|
562 |
+
progress=False,
|
563 |
+
):
|
564 |
+
"""
|
565 |
+
Generate samples from the model and yield intermediate samples from
|
566 |
+
each timestep of diffusion.
|
567 |
+
|
568 |
+
Arguments are the same as p_sample_loop().
|
569 |
+
Returns a generator over dicts, where each dict is the return value of
|
570 |
+
p_sample().
|
571 |
+
"""
|
572 |
+
if device is None:
|
573 |
+
device = next(model.parameters()).device
|
574 |
+
if noise is not None:
|
575 |
+
img = noise
|
576 |
+
else:
|
577 |
+
assert isinstance(shape, (tuple, list))
|
578 |
+
img = th.randn(*shape, device=device)
|
579 |
+
indices = list(range(self.num_timesteps))[::-1]
|
580 |
+
|
581 |
+
if progress:
|
582 |
+
# Lazy import so that we don't depend on tqdm.
|
583 |
+
from tqdm.auto import tqdm
|
584 |
+
|
585 |
+
indices = tqdm(indices)
|
586 |
+
|
587 |
+
for i in indices:
|
588 |
+
# t = th.tensor([i] * shape[0], device=device)
|
589 |
+
t = th.tensor([i] * len(img), device=device)
|
590 |
+
with th.no_grad():
|
591 |
+
out = self.p_sample(
|
592 |
+
model,
|
593 |
+
img,
|
594 |
+
t,
|
595 |
+
clip_denoised=clip_denoised,
|
596 |
+
denoised_fn=denoised_fn,
|
597 |
+
cond_fn=cond_fn,
|
598 |
+
model_kwargs=model_kwargs,
|
599 |
+
)
|
600 |
+
yield out
|
601 |
+
img = out["sample"]
|
602 |
+
|
603 |
+
def ddim_sample(
|
604 |
+
self,
|
605 |
+
model: Model,
|
606 |
+
x,
|
607 |
+
t,
|
608 |
+
clip_denoised=True,
|
609 |
+
denoised_fn=None,
|
610 |
+
cond_fn=None,
|
611 |
+
model_kwargs=None,
|
612 |
+
eta=0.0,
|
613 |
+
):
|
614 |
+
"""
|
615 |
+
Sample x_{t-1} from the model using DDIM.
|
616 |
+
|
617 |
+
Same usage as p_sample().
|
618 |
+
"""
|
619 |
+
out = self.p_mean_variance(
|
620 |
+
model,
|
621 |
+
x,
|
622 |
+
t,
|
623 |
+
clip_denoised=clip_denoised,
|
624 |
+
denoised_fn=denoised_fn,
|
625 |
+
model_kwargs=model_kwargs,
|
626 |
+
)
|
627 |
+
if cond_fn is not None:
|
628 |
+
out = self.condition_score(cond_fn,
|
629 |
+
out,
|
630 |
+
x,
|
631 |
+
t,
|
632 |
+
model_kwargs=model_kwargs)
|
633 |
+
|
634 |
+
# Usually our model outputs epsilon, but we re-derive it
|
635 |
+
# in case we used x_start or x_prev prediction.
|
636 |
+
eps = self._predict_eps_from_xstart(x, t, out["pred_xstart"])
|
637 |
+
|
638 |
+
alpha_bar = _extract_into_tensor(self.alphas_cumprod, t, x.shape)
|
639 |
+
alpha_bar_prev = _extract_into_tensor(self.alphas_cumprod_prev, t,
|
640 |
+
x.shape)
|
641 |
+
sigma = (eta * th.sqrt((1 - alpha_bar_prev) / (1 - alpha_bar)) *
|
642 |
+
th.sqrt(1 - alpha_bar / alpha_bar_prev))
|
643 |
+
# Equation 12.
|
644 |
+
noise = th.randn_like(x)
|
645 |
+
mean_pred = (out["pred_xstart"] * th.sqrt(alpha_bar_prev) +
|
646 |
+
th.sqrt(1 - alpha_bar_prev - sigma**2) * eps)
|
647 |
+
nonzero_mask = ((t != 0).float().view(-1, *([1] * (len(x.shape) - 1)))
|
648 |
+
) # no noise when t == 0
|
649 |
+
sample = mean_pred + nonzero_mask * sigma * noise
|
650 |
+
return {"sample": sample, "pred_xstart": out["pred_xstart"]}
|
651 |
+
|
652 |
+
def ddim_reverse_sample(
|
653 |
+
self,
|
654 |
+
model: Model,
|
655 |
+
x,
|
656 |
+
t,
|
657 |
+
clip_denoised=True,
|
658 |
+
denoised_fn=None,
|
659 |
+
model_kwargs=None,
|
660 |
+
eta=0.0,
|
661 |
+
):
|
662 |
+
"""
|
663 |
+
Sample x_{t+1} from the model using DDIM reverse ODE.
|
664 |
+
NOTE: never used ?
|
665 |
+
"""
|
666 |
+
assert eta == 0.0, "Reverse ODE only for deterministic path"
|
667 |
+
out = self.p_mean_variance(
|
668 |
+
model,
|
669 |
+
x,
|
670 |
+
t,
|
671 |
+
clip_denoised=clip_denoised,
|
672 |
+
denoised_fn=denoised_fn,
|
673 |
+
model_kwargs=model_kwargs,
|
674 |
+
)
|
675 |
+
# Usually our model outputs epsilon, but we re-derive it
|
676 |
+
# in case we used x_start or x_prev prediction.
|
677 |
+
eps = (_extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x.shape)
|
678 |
+
* x - out["pred_xstart"]) / _extract_into_tensor(
|
679 |
+
self.sqrt_recipm1_alphas_cumprod, t, x.shape)
|
680 |
+
alpha_bar_next = _extract_into_tensor(self.alphas_cumprod_next, t,
|
681 |
+
x.shape)
|
682 |
+
|
683 |
+
# Equation 12. reversed (DDIM paper) (th.sqrt == torch.sqrt)
|
684 |
+
mean_pred = (out["pred_xstart"] * th.sqrt(alpha_bar_next) +
|
685 |
+
th.sqrt(1 - alpha_bar_next) * eps)
|
686 |
+
|
687 |
+
return {"sample": mean_pred, "pred_xstart": out["pred_xstart"]}
|
688 |
+
|
689 |
+
def ddim_reverse_sample_loop(
|
690 |
+
self,
|
691 |
+
model: Model,
|
692 |
+
x,
|
693 |
+
clip_denoised=True,
|
694 |
+
denoised_fn=None,
|
695 |
+
model_kwargs=None,
|
696 |
+
eta=0.0,
|
697 |
+
device=None,
|
698 |
+
):
|
699 |
+
if device is None:
|
700 |
+
device = next(model.parameters()).device
|
701 |
+
sample_t = []
|
702 |
+
xstart_t = []
|
703 |
+
T = []
|
704 |
+
indices = list(range(self.num_timesteps))
|
705 |
+
sample = x
|
706 |
+
for i in indices:
|
707 |
+
t = th.tensor([i] * len(sample), device=device)
|
708 |
+
with th.no_grad():
|
709 |
+
out = self.ddim_reverse_sample(model,
|
710 |
+
sample,
|
711 |
+
t=t,
|
712 |
+
clip_denoised=clip_denoised,
|
713 |
+
denoised_fn=denoised_fn,
|
714 |
+
model_kwargs=model_kwargs,
|
715 |
+
eta=eta)
|
716 |
+
sample = out['sample']
|
717 |
+
# [1, ..., T]
|
718 |
+
sample_t.append(sample)
|
719 |
+
# [0, ...., T-1]
|
720 |
+
xstart_t.append(out['pred_xstart'])
|
721 |
+
# [0, ..., T-1] ready to use
|
722 |
+
T.append(t)
|
723 |
+
|
724 |
+
return {
|
725 |
+
# xT "
|
726 |
+
'sample': sample,
|
727 |
+
# (1, ..., T)
|
728 |
+
'sample_t': sample_t,
|
729 |
+
# xstart here is a bit different from sampling from T = T-1 to T = 0
|
730 |
+
# may not be exact
|
731 |
+
'xstart_t': xstart_t,
|
732 |
+
'T': T,
|
733 |
+
}
|
734 |
+
|
735 |
+
def ddim_sample_loop(
|
736 |
+
self,
|
737 |
+
model: Model,
|
738 |
+
shape=None,
|
739 |
+
noise=None,
|
740 |
+
clip_denoised=True,
|
741 |
+
denoised_fn=None,
|
742 |
+
cond_fn=None,
|
743 |
+
model_kwargs=None,
|
744 |
+
device=None,
|
745 |
+
progress=False,
|
746 |
+
eta=0.0,
|
747 |
+
):
|
748 |
+
"""
|
749 |
+
Generate samples from the model using DDIM.
|
750 |
+
|
751 |
+
Same usage as p_sample_loop().
|
752 |
+
"""
|
753 |
+
final = None
|
754 |
+
for sample in self.ddim_sample_loop_progressive(
|
755 |
+
model,
|
756 |
+
shape,
|
757 |
+
noise=noise,
|
758 |
+
clip_denoised=clip_denoised,
|
759 |
+
denoised_fn=denoised_fn,
|
760 |
+
cond_fn=cond_fn,
|
761 |
+
model_kwargs=model_kwargs,
|
762 |
+
device=device,
|
763 |
+
progress=progress,
|
764 |
+
eta=eta,
|
765 |
+
):
|
766 |
+
final = sample
|
767 |
+
return final["sample"]
|
768 |
+
|
769 |
+
def ddim_sample_loop_progressive(
|
770 |
+
self,
|
771 |
+
model: Model,
|
772 |
+
shape=None,
|
773 |
+
noise=None,
|
774 |
+
clip_denoised=True,
|
775 |
+
denoised_fn=None,
|
776 |
+
cond_fn=None,
|
777 |
+
model_kwargs=None,
|
778 |
+
device=None,
|
779 |
+
progress=False,
|
780 |
+
eta=0.0,
|
781 |
+
):
|
782 |
+
"""
|
783 |
+
Use DDIM to sample from the model and yield intermediate samples from
|
784 |
+
each timestep of DDIM.
|
785 |
+
|
786 |
+
Same usage as p_sample_loop_progressive().
|
787 |
+
"""
|
788 |
+
if device is None:
|
789 |
+
device = next(model.parameters()).device
|
790 |
+
if noise is not None:
|
791 |
+
img = noise
|
792 |
+
else:
|
793 |
+
assert isinstance(shape, (tuple, list))
|
794 |
+
img = th.randn(*shape, device=device)
|
795 |
+
indices = list(range(self.num_timesteps))[::-1]
|
796 |
+
|
797 |
+
if progress:
|
798 |
+
# Lazy import so that we don't depend on tqdm.
|
799 |
+
from tqdm.auto import tqdm
|
800 |
+
|
801 |
+
indices = tqdm(indices)
|
802 |
+
|
803 |
+
for i in indices:
|
804 |
+
|
805 |
+
if isinstance(model_kwargs, list):
|
806 |
+
# index dependent model kwargs
|
807 |
+
# (T-1, ..., 0)
|
808 |
+
_kwargs = model_kwargs[i]
|
809 |
+
else:
|
810 |
+
_kwargs = model_kwargs
|
811 |
+
|
812 |
+
t = th.tensor([i] * len(img), device=device)
|
813 |
+
with th.no_grad():
|
814 |
+
out = self.ddim_sample(
|
815 |
+
model,
|
816 |
+
img,
|
817 |
+
t,
|
818 |
+
clip_denoised=clip_denoised,
|
819 |
+
denoised_fn=denoised_fn,
|
820 |
+
cond_fn=cond_fn,
|
821 |
+
model_kwargs=_kwargs,
|
822 |
+
eta=eta,
|
823 |
+
)
|
824 |
+
out['t'] = t
|
825 |
+
yield out
|
826 |
+
img = out["sample"]
|
827 |
+
|
828 |
+
def _vb_terms_bpd(self,
|
829 |
+
model: Model,
|
830 |
+
x_start,
|
831 |
+
x_t,
|
832 |
+
t,
|
833 |
+
clip_denoised=True,
|
834 |
+
model_kwargs=None):
|
835 |
+
"""
|
836 |
+
Get a term for the variational lower-bound.
|
837 |
+
|
838 |
+
The resulting units are bits (rather than nats, as one might expect).
|
839 |
+
This allows for comparison to other papers.
|
840 |
+
|
841 |
+
:return: a dict with the following keys:
|
842 |
+
- 'output': a shape [N] tensor of NLLs or KLs.
|
843 |
+
- 'pred_xstart': the x_0 predictions.
|
844 |
+
"""
|
845 |
+
true_mean, _, true_log_variance_clipped = self.q_posterior_mean_variance(
|
846 |
+
x_start=x_start, x_t=x_t, t=t)
|
847 |
+
out = self.p_mean_variance(model,
|
848 |
+
x_t,
|
849 |
+
t,
|
850 |
+
clip_denoised=clip_denoised,
|
851 |
+
model_kwargs=model_kwargs)
|
852 |
+
kl = normal_kl(true_mean, true_log_variance_clipped, out["mean"],
|
853 |
+
out["log_variance"])
|
854 |
+
kl = mean_flat(kl) / np.log(2.0)
|
855 |
+
|
856 |
+
decoder_nll = -discretized_gaussian_log_likelihood(
|
857 |
+
x_start, means=out["mean"], log_scales=0.5 * out["log_variance"])
|
858 |
+
assert decoder_nll.shape == x_start.shape
|
859 |
+
decoder_nll = mean_flat(decoder_nll) / np.log(2.0)
|
860 |
+
|
861 |
+
# At the first timestep return the decoder NLL,
|
862 |
+
# otherwise return KL(q(x_{t-1}|x_t,x_0) || p(x_{t-1}|x_t))
|
863 |
+
output = th.where((t == 0), decoder_nll, kl)
|
864 |
+
return {
|
865 |
+
"output": output,
|
866 |
+
"pred_xstart": out["pred_xstart"],
|
867 |
+
'model_forward': out['model_forward'],
|
868 |
+
}
|
869 |
+
|
870 |
+
def _prior_bpd(self, x_start):
|
871 |
+
"""
|
872 |
+
Get the prior KL term for the variational lower-bound, measured in
|
873 |
+
bits-per-dim.
|
874 |
+
|
875 |
+
This term can't be optimized, as it only depends on the encoder.
|
876 |
+
|
877 |
+
:param x_start: the [N x C x ...] tensor of inputs.
|
878 |
+
:return: a batch of [N] KL values (in bits), one per batch element.
|
879 |
+
"""
|
880 |
+
batch_size = x_start.shape[0]
|
881 |
+
t = th.tensor([self.num_timesteps - 1] * batch_size,
|
882 |
+
device=x_start.device)
|
883 |
+
qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t)
|
884 |
+
kl_prior = normal_kl(mean1=qt_mean,
|
885 |
+
logvar1=qt_log_variance,
|
886 |
+
mean2=0.0,
|
887 |
+
logvar2=0.0)
|
888 |
+
return mean_flat(kl_prior) / np.log(2.0)
|
889 |
+
|
890 |
+
def calc_bpd_loop(self,
|
891 |
+
model: Model,
|
892 |
+
x_start,
|
893 |
+
clip_denoised=True,
|
894 |
+
model_kwargs=None):
|
895 |
+
"""
|
896 |
+
Compute the entire variational lower-bound, measured in bits-per-dim,
|
897 |
+
as well as other related quantities.
|
898 |
+
|
899 |
+
:param model: the model to evaluate loss on.
|
900 |
+
:param x_start: the [N x C x ...] tensor of inputs.
|
901 |
+
:param clip_denoised: if True, clip denoised samples.
|
902 |
+
:param model_kwargs: if not None, a dict of extra keyword arguments to
|
903 |
+
pass to the model. This can be used for conditioning.
|
904 |
+
|
905 |
+
:return: a dict containing the following keys:
|
906 |
+
- total_bpd: the total variational lower-bound, per batch element.
|
907 |
+
- prior_bpd: the prior term in the lower-bound.
|
908 |
+
- vb: an [N x T] tensor of terms in the lower-bound.
|
909 |
+
- xstart_mse: an [N x T] tensor of x_0 MSEs for each timestep.
|
910 |
+
- mse: an [N x T] tensor of epsilon MSEs for each timestep.
|
911 |
+
"""
|
912 |
+
device = x_start.device
|
913 |
+
batch_size = x_start.shape[0]
|
914 |
+
|
915 |
+
vb = []
|
916 |
+
xstart_mse = []
|
917 |
+
mse = []
|
918 |
+
for t in list(range(self.num_timesteps))[::-1]:
|
919 |
+
t_batch = th.tensor([t] * batch_size, device=device)
|
920 |
+
noise = th.randn_like(x_start)
|
921 |
+
x_t = self.q_sample(x_start=x_start, t=t_batch, noise=noise)
|
922 |
+
# Calculate VLB term at the current timestep
|
923 |
+
with th.no_grad():
|
924 |
+
out = self._vb_terms_bpd(
|
925 |
+
model,
|
926 |
+
x_start=x_start,
|
927 |
+
x_t=x_t,
|
928 |
+
t=t_batch,
|
929 |
+
clip_denoised=clip_denoised,
|
930 |
+
model_kwargs=model_kwargs,
|
931 |
+
)
|
932 |
+
vb.append(out["output"])
|
933 |
+
xstart_mse.append(mean_flat((out["pred_xstart"] - x_start)**2))
|
934 |
+
eps = self._predict_eps_from_xstart(x_t, t_batch,
|
935 |
+
out["pred_xstart"])
|
936 |
+
mse.append(mean_flat((eps - noise)**2))
|
937 |
+
|
938 |
+
vb = th.stack(vb, dim=1)
|
939 |
+
xstart_mse = th.stack(xstart_mse, dim=1)
|
940 |
+
mse = th.stack(mse, dim=1)
|
941 |
+
|
942 |
+
prior_bpd = self._prior_bpd(x_start)
|
943 |
+
total_bpd = vb.sum(dim=1) + prior_bpd
|
944 |
+
return {
|
945 |
+
"total_bpd": total_bpd,
|
946 |
+
"prior_bpd": prior_bpd,
|
947 |
+
"vb": vb,
|
948 |
+
"xstart_mse": xstart_mse,
|
949 |
+
"mse": mse,
|
950 |
+
}
|
951 |
+
|
952 |
+
|
953 |
+
def _extract_into_tensor(arr, timesteps, broadcast_shape):
|
954 |
+
"""
|
955 |
+
Extract values from a 1-D numpy array for a batch of indices.
|
956 |
+
|
957 |
+
:param arr: the 1-D numpy array.
|
958 |
+
:param timesteps: a tensor of indices into the array to extract.
|
959 |
+
:param broadcast_shape: a larger shape of K dimensions with the batch
|
960 |
+
dimension equal to the length of timesteps.
|
961 |
+
:return: a tensor of shape [batch_size, 1, ...] where the shape has K dims.
|
962 |
+
"""
|
963 |
+
res = th.from_numpy(arr).to(device=timesteps.device)[timesteps].float()
|
964 |
+
while len(res.shape) < len(broadcast_shape):
|
965 |
+
res = res[..., None]
|
966 |
+
return res.expand(broadcast_shape)
|
967 |
+
|
968 |
+
|
969 |
+
def get_named_beta_schedule(schedule_name, num_diffusion_timesteps):
|
970 |
+
"""
|
971 |
+
Get a pre-defined beta schedule for the given name.
|
972 |
+
|
973 |
+
The beta schedule library consists of beta schedules which remain similar
|
974 |
+
in the limit of num_diffusion_timesteps.
|
975 |
+
Beta schedules may be added, but should not be removed or changed once
|
976 |
+
they are committed to maintain backwards compatibility.
|
977 |
+
"""
|
978 |
+
if schedule_name == "linear":
|
979 |
+
# Linear schedule from Ho et al, extended to work for any number of
|
980 |
+
# diffusion steps.
|
981 |
+
scale = 1000 / num_diffusion_timesteps
|
982 |
+
beta_start = scale * 0.0001
|
983 |
+
beta_end = scale * 0.02
|
984 |
+
return np.linspace(beta_start,
|
985 |
+
beta_end,
|
986 |
+
num_diffusion_timesteps,
|
987 |
+
dtype=np.float64)
|
988 |
+
elif schedule_name == "cosine":
|
989 |
+
return betas_for_alpha_bar(
|
990 |
+
num_diffusion_timesteps,
|
991 |
+
lambda t: math.cos((t + 0.008) / 1.008 * math.pi / 2)**2,
|
992 |
+
)
|
993 |
+
elif schedule_name == "const0.01":
|
994 |
+
scale = 1000 / num_diffusion_timesteps
|
995 |
+
return np.array([scale * 0.01] * num_diffusion_timesteps,
|
996 |
+
dtype=np.float64)
|
997 |
+
elif schedule_name == "const0.015":
|
998 |
+
scale = 1000 / num_diffusion_timesteps
|
999 |
+
return np.array([scale * 0.015] * num_diffusion_timesteps,
|
1000 |
+
dtype=np.float64)
|
1001 |
+
elif schedule_name == "const0.008":
|
1002 |
+
scale = 1000 / num_diffusion_timesteps
|
1003 |
+
return np.array([scale * 0.008] * num_diffusion_timesteps,
|
1004 |
+
dtype=np.float64)
|
1005 |
+
elif schedule_name == "const0.0065":
|
1006 |
+
scale = 1000 / num_diffusion_timesteps
|
1007 |
+
return np.array([scale * 0.0065] * num_diffusion_timesteps,
|
1008 |
+
dtype=np.float64)
|
1009 |
+
elif schedule_name == "const0.0055":
|
1010 |
+
scale = 1000 / num_diffusion_timesteps
|
1011 |
+
return np.array([scale * 0.0055] * num_diffusion_timesteps,
|
1012 |
+
dtype=np.float64)
|
1013 |
+
elif schedule_name == "const0.0045":
|
1014 |
+
scale = 1000 / num_diffusion_timesteps
|
1015 |
+
return np.array([scale * 0.0045] * num_diffusion_timesteps,
|
1016 |
+
dtype=np.float64)
|
1017 |
+
elif schedule_name == "const0.0035":
|
1018 |
+
scale = 1000 / num_diffusion_timesteps
|
1019 |
+
return np.array([scale * 0.0035] * num_diffusion_timesteps,
|
1020 |
+
dtype=np.float64)
|
1021 |
+
elif schedule_name == "const0.0025":
|
1022 |
+
scale = 1000 / num_diffusion_timesteps
|
1023 |
+
return np.array([scale * 0.0025] * num_diffusion_timesteps,
|
1024 |
+
dtype=np.float64)
|
1025 |
+
elif schedule_name == "const0.0015":
|
1026 |
+
scale = 1000 / num_diffusion_timesteps
|
1027 |
+
return np.array([scale * 0.0015] * num_diffusion_timesteps,
|
1028 |
+
dtype=np.float64)
|
1029 |
+
else:
|
1030 |
+
raise NotImplementedError(f"unknown beta schedule: {schedule_name}")
|
1031 |
+
|
1032 |
+
|
1033 |
+
def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999):
|
1034 |
+
"""
|
1035 |
+
Create a beta schedule that discretizes the given alpha_t_bar function,
|
1036 |
+
which defines the cumulative product of (1-beta) over time from t = [0,1].
|
1037 |
+
|
1038 |
+
:param num_diffusion_timesteps: the number of betas to produce.
|
1039 |
+
:param alpha_bar: a lambda that takes an argument t from 0 to 1 and
|
1040 |
+
produces the cumulative product of (1-beta) up to that
|
1041 |
+
part of the diffusion process.
|
1042 |
+
:param max_beta: the maximum beta to use; use values lower than 1 to
|
1043 |
+
prevent singularities.
|
1044 |
+
"""
|
1045 |
+
betas = []
|
1046 |
+
for i in range(num_diffusion_timesteps):
|
1047 |
+
t1 = i / num_diffusion_timesteps
|
1048 |
+
t2 = (i + 1) / num_diffusion_timesteps
|
1049 |
+
betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
|
1050 |
+
return np.array(betas)
|
1051 |
+
|
1052 |
+
|
1053 |
+
def normal_kl(mean1, logvar1, mean2, logvar2):
|
1054 |
+
"""
|
1055 |
+
Compute the KL divergence between two gaussians.
|
1056 |
+
|
1057 |
+
Shapes are automatically broadcasted, so batches can be compared to
|
1058 |
+
scalars, among other use cases.
|
1059 |
+
"""
|
1060 |
+
tensor = None
|
1061 |
+
for obj in (mean1, logvar1, mean2, logvar2):
|
1062 |
+
if isinstance(obj, th.Tensor):
|
1063 |
+
tensor = obj
|
1064 |
+
break
|
1065 |
+
assert tensor is not None, "at least one argument must be a Tensor"
|
1066 |
+
|
1067 |
+
# Force variances to be Tensors. Broadcasting helps convert scalars to
|
1068 |
+
# Tensors, but it does not work for th.exp().
|
1069 |
+
logvar1, logvar2 = [
|
1070 |
+
x if isinstance(x, th.Tensor) else th.tensor(x).to(tensor)
|
1071 |
+
for x in (logvar1, logvar2)
|
1072 |
+
]
|
1073 |
+
|
1074 |
+
return 0.5 * (-1.0 + logvar2 - logvar1 + th.exp(logvar1 - logvar2) +
|
1075 |
+
((mean1 - mean2)**2) * th.exp(-logvar2))
|
1076 |
+
|
1077 |
+
|
1078 |
+
def approx_standard_normal_cdf(x):
|
1079 |
+
"""
|
1080 |
+
A fast approximation of the cumulative distribution function of the
|
1081 |
+
standard normal.
|
1082 |
+
"""
|
1083 |
+
return 0.5 * (
|
1084 |
+
1.0 + th.tanh(np.sqrt(2.0 / np.pi) * (x + 0.044715 * th.pow(x, 3))))
|
1085 |
+
|
1086 |
+
|
1087 |
+
def discretized_gaussian_log_likelihood(x, *, means, log_scales):
|
1088 |
+
"""
|
1089 |
+
Compute the log-likelihood of a Gaussian distribution discretizing to a
|
1090 |
+
given image.
|
1091 |
+
|
1092 |
+
:param x: the target images. It is assumed that this was uint8 values,
|
1093 |
+
rescaled to the range [-1, 1].
|
1094 |
+
:param means: the Gaussian mean Tensor.
|
1095 |
+
:param log_scales: the Gaussian log stddev Tensor.
|
1096 |
+
:return: a tensor like x of log probabilities (in nats).
|
1097 |
+
"""
|
1098 |
+
assert x.shape == means.shape == log_scales.shape
|
1099 |
+
centered_x = x - means
|
1100 |
+
inv_stdv = th.exp(-log_scales)
|
1101 |
+
plus_in = inv_stdv * (centered_x + 1.0 / 255.0)
|
1102 |
+
cdf_plus = approx_standard_normal_cdf(plus_in)
|
1103 |
+
min_in = inv_stdv * (centered_x - 1.0 / 255.0)
|
1104 |
+
cdf_min = approx_standard_normal_cdf(min_in)
|
1105 |
+
log_cdf_plus = th.log(cdf_plus.clamp(min=1e-12))
|
1106 |
+
log_one_minus_cdf_min = th.log((1.0 - cdf_min).clamp(min=1e-12))
|
1107 |
+
cdf_delta = cdf_plus - cdf_min
|
1108 |
+
log_probs = th.where(
|
1109 |
+
x < -0.999,
|
1110 |
+
log_cdf_plus,
|
1111 |
+
th.where(x > 0.999, log_one_minus_cdf_min,
|
1112 |
+
th.log(cdf_delta.clamp(min=1e-12))),
|
1113 |
+
)
|
1114 |
+
assert log_probs.shape == x.shape
|
1115 |
+
return log_probs
|
1116 |
+
|
1117 |
+
|
1118 |
+
class DummyModel(th.nn.Module):
|
1119 |
+
def __init__(self, pred):
|
1120 |
+
super().__init__()
|
1121 |
+
self.pred = pred
|
1122 |
+
|
1123 |
+
def forward(self, *args, **kwargs):
|
1124 |
+
return DummyReturn(pred=self.pred)
|
1125 |
+
|
1126 |
+
|
1127 |
+
class DummyReturn(NamedTuple):
|
1128 |
+
pred: th.Tensor
|
diffusion/diffusion.py
ADDED
@@ -0,0 +1,156 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .base import *
|
2 |
+
from dataclasses import dataclass
|
3 |
+
|
4 |
+
|
5 |
+
def space_timesteps(num_timesteps, section_counts):
|
6 |
+
"""
|
7 |
+
Create a list of timesteps to use from an original diffusion process,
|
8 |
+
given the number of timesteps we want to take from equally-sized portions
|
9 |
+
of the original process.
|
10 |
+
|
11 |
+
For example, if there's 300 timesteps and the section counts are [10,15,20]
|
12 |
+
then the first 100 timesteps are strided to be 10 timesteps, the second 100
|
13 |
+
are strided to be 15 timesteps, and the final 100 are strided to be 20.
|
14 |
+
|
15 |
+
If the stride is a string starting with "ddim", then the fixed striding
|
16 |
+
from the DDIM paper is used, and only one section is allowed.
|
17 |
+
|
18 |
+
:param num_timesteps: the number of diffusion steps in the original
|
19 |
+
process to divide up.
|
20 |
+
:param section_counts: either a list of numbers, or a string containing
|
21 |
+
comma-separated numbers, indicating the step count
|
22 |
+
per section. As a special case, use "ddimN" where N
|
23 |
+
is a number of steps to use the striding from the
|
24 |
+
DDIM paper.
|
25 |
+
:return: a set of diffusion steps from the original process to use.
|
26 |
+
"""
|
27 |
+
if isinstance(section_counts, str):
|
28 |
+
if section_counts.startswith("ddim"):
|
29 |
+
desired_count = int(section_counts[len("ddim"):])
|
30 |
+
for i in range(1, num_timesteps):
|
31 |
+
if len(range(0, num_timesteps, i)) == desired_count:
|
32 |
+
return set(range(0, num_timesteps, i))
|
33 |
+
raise ValueError(
|
34 |
+
f"cannot create exactly {num_timesteps} steps with an integer stride"
|
35 |
+
)
|
36 |
+
section_counts = [int(x) for x in section_counts.split(",")]
|
37 |
+
size_per = num_timesteps // len(section_counts)
|
38 |
+
extra = num_timesteps % len(section_counts)
|
39 |
+
start_idx = 0
|
40 |
+
all_steps = []
|
41 |
+
for i, section_count in enumerate(section_counts):
|
42 |
+
size = size_per + (1 if i < extra else 0)
|
43 |
+
if size < section_count:
|
44 |
+
raise ValueError(
|
45 |
+
f"cannot divide section of {size} steps into {section_count}")
|
46 |
+
if section_count <= 1:
|
47 |
+
frac_stride = 1
|
48 |
+
else:
|
49 |
+
frac_stride = (size - 1) / (section_count - 1)
|
50 |
+
cur_idx = 0.0
|
51 |
+
taken_steps = []
|
52 |
+
for _ in range(section_count):
|
53 |
+
taken_steps.append(start_idx + round(cur_idx))
|
54 |
+
cur_idx += frac_stride
|
55 |
+
all_steps += taken_steps
|
56 |
+
start_idx += size
|
57 |
+
return set(all_steps)
|
58 |
+
|
59 |
+
|
60 |
+
@dataclass
|
61 |
+
class SpacedDiffusionBeatGansConfig(GaussianDiffusionBeatGansConfig):
|
62 |
+
use_timesteps: Tuple[int] = None
|
63 |
+
|
64 |
+
def make_sampler(self):
|
65 |
+
return SpacedDiffusionBeatGans(self)
|
66 |
+
|
67 |
+
|
68 |
+
class SpacedDiffusionBeatGans(GaussianDiffusionBeatGans):
|
69 |
+
"""
|
70 |
+
A diffusion process which can skip steps in a base diffusion process.
|
71 |
+
|
72 |
+
:param use_timesteps: a collection (sequence or set) of timesteps from the
|
73 |
+
original diffusion process to retain.
|
74 |
+
:param kwargs: the kwargs to create the base diffusion process.
|
75 |
+
"""
|
76 |
+
def __init__(self, conf: SpacedDiffusionBeatGansConfig):
|
77 |
+
self.conf = conf
|
78 |
+
self.use_timesteps = set(conf.use_timesteps)
|
79 |
+
# how the new t's mapped to the old t's
|
80 |
+
self.timestep_map = []
|
81 |
+
self.original_num_steps = len(conf.betas)
|
82 |
+
|
83 |
+
base_diffusion = GaussianDiffusionBeatGans(conf) # pylint: disable=missing-kwoa
|
84 |
+
last_alpha_cumprod = 1.0
|
85 |
+
new_betas = []
|
86 |
+
for i, alpha_cumprod in enumerate(base_diffusion.alphas_cumprod):
|
87 |
+
if i in self.use_timesteps:
|
88 |
+
# getting the new betas of the new timesteps
|
89 |
+
new_betas.append(1 - alpha_cumprod / last_alpha_cumprod)
|
90 |
+
last_alpha_cumprod = alpha_cumprod
|
91 |
+
self.timestep_map.append(i)
|
92 |
+
conf.betas = np.array(new_betas)
|
93 |
+
super().__init__(conf)
|
94 |
+
|
95 |
+
def p_mean_variance(self, model: Model, *args, **kwargs): # pylint: disable=signature-differs
|
96 |
+
return super().p_mean_variance(self._wrap_model(model), *args,
|
97 |
+
**kwargs)
|
98 |
+
|
99 |
+
def training_losses(self, model: Model, *args, **kwargs): # pylint: disable=signature-differs
|
100 |
+
return super().training_losses(self._wrap_model(model), *args,
|
101 |
+
**kwargs)
|
102 |
+
|
103 |
+
def condition_mean(self, cond_fn, *args, **kwargs):
|
104 |
+
return super().condition_mean(self._wrap_model(cond_fn), *args,
|
105 |
+
**kwargs)
|
106 |
+
|
107 |
+
def condition_score(self, cond_fn, *args, **kwargs):
|
108 |
+
return super().condition_score(self._wrap_model(cond_fn), *args,
|
109 |
+
**kwargs)
|
110 |
+
|
111 |
+
def _wrap_model(self, model: Model):
|
112 |
+
if isinstance(model, _WrappedModel):
|
113 |
+
return model
|
114 |
+
return _WrappedModel(model, self.timestep_map, self.rescale_timesteps,
|
115 |
+
self.original_num_steps)
|
116 |
+
|
117 |
+
def _scale_timesteps(self, t):
|
118 |
+
# Scaling is done by the wrapped model.
|
119 |
+
return t
|
120 |
+
|
121 |
+
|
122 |
+
class _WrappedModel:
|
123 |
+
"""
|
124 |
+
converting the supplied t's to the old t's scales.
|
125 |
+
"""
|
126 |
+
def __init__(self, model, timestep_map, rescale_timesteps,
|
127 |
+
original_num_steps):
|
128 |
+
self.model = model
|
129 |
+
self.timestep_map = timestep_map
|
130 |
+
self.rescale_timesteps = rescale_timesteps
|
131 |
+
self.original_num_steps = original_num_steps
|
132 |
+
|
133 |
+
def forward(self,motion_start, motion_direction_start, audio_feats,face_location, face_scale,yaw_pitch_roll, x_t, t, control_flag=False):
|
134 |
+
"""
|
135 |
+
Args:
|
136 |
+
t: t's with differrent ranges (can be << T due to smaller eval T) need to be converted to the original t's
|
137 |
+
t_cond: the same as t but can be of different values
|
138 |
+
"""
|
139 |
+
map_tensor = th.tensor(self.timestep_map,
|
140 |
+
device=t.device,
|
141 |
+
dtype=t.dtype)
|
142 |
+
|
143 |
+
def do(t):
|
144 |
+
new_ts = map_tensor[t]
|
145 |
+
if self.rescale_timesteps:
|
146 |
+
new_ts = new_ts.float() * (1000.0 / self.original_num_steps)
|
147 |
+
return new_ts
|
148 |
+
|
149 |
+
return self.model(motion_start, motion_direction_start, audio_feats,face_location, face_scale,yaw_pitch_roll, x_t,do(t), control_flag=control_flag)
|
150 |
+
|
151 |
+
def __getattr__(self, name):
|
152 |
+
# allow for calling the model's methods
|
153 |
+
if hasattr(self.model, name):
|
154 |
+
func = getattr(self.model, name)
|
155 |
+
return func
|
156 |
+
raise AttributeError(name)
|
diffusion/resample.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from abc import ABC, abstractmethod
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import torch as th
|
5 |
+
import torch.distributed as dist
|
6 |
+
|
7 |
+
|
8 |
+
def create_named_schedule_sampler(name, diffusion):
|
9 |
+
"""
|
10 |
+
Create a ScheduleSampler from a library of pre-defined samplers.
|
11 |
+
|
12 |
+
:param name: the name of the sampler.
|
13 |
+
:param diffusion: the diffusion object to sample for.
|
14 |
+
"""
|
15 |
+
if name == "uniform":
|
16 |
+
return UniformSampler(diffusion)
|
17 |
+
else:
|
18 |
+
raise NotImplementedError(f"unknown schedule sampler: {name}")
|
19 |
+
|
20 |
+
|
21 |
+
class ScheduleSampler(ABC):
|
22 |
+
"""
|
23 |
+
A distribution over timesteps in the diffusion process, intended to reduce
|
24 |
+
variance of the objective.
|
25 |
+
|
26 |
+
By default, samplers perform unbiased importance sampling, in which the
|
27 |
+
objective's mean is unchanged.
|
28 |
+
However, subclasses may override sample() to change how the resampled
|
29 |
+
terms are reweighted, allowing for actual changes in the objective.
|
30 |
+
"""
|
31 |
+
@abstractmethod
|
32 |
+
def weights(self):
|
33 |
+
"""
|
34 |
+
Get a numpy array of weights, one per diffusion step.
|
35 |
+
|
36 |
+
The weights needn't be normalized, but must be positive.
|
37 |
+
"""
|
38 |
+
|
39 |
+
def sample(self, batch_size, device):
|
40 |
+
"""
|
41 |
+
Importance-sample timesteps for a batch.
|
42 |
+
|
43 |
+
:param batch_size: the number of timesteps.
|
44 |
+
:param device: the torch device to save to.
|
45 |
+
:return: a tuple (timesteps, weights):
|
46 |
+
- timesteps: a tensor of timestep indices.
|
47 |
+
- weights: a tensor of weights to scale the resulting losses.
|
48 |
+
"""
|
49 |
+
w = self.weights()
|
50 |
+
p = w / np.sum(w)
|
51 |
+
indices_np = np.random.choice(len(p), size=(batch_size, ), p=p)
|
52 |
+
indices = th.from_numpy(indices_np).long().to(device)
|
53 |
+
weights_np = 1 / (len(p) * p[indices_np])
|
54 |
+
weights = th.from_numpy(weights_np).float().to(device)
|
55 |
+
return indices, weights
|
56 |
+
|
57 |
+
|
58 |
+
class UniformSampler(ScheduleSampler):
|
59 |
+
def __init__(self, num_timesteps):
|
60 |
+
self._weights = np.ones([num_timesteps])
|
61 |
+
|
62 |
+
def weights(self):
|
63 |
+
return self._weights
|
dist_utils.py
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List
|
2 |
+
from torch import distributed
|
3 |
+
|
4 |
+
|
5 |
+
def barrier():
|
6 |
+
if distributed.is_initialized():
|
7 |
+
distributed.barrier()
|
8 |
+
else:
|
9 |
+
pass
|
10 |
+
|
11 |
+
|
12 |
+
def broadcast(data, src):
|
13 |
+
if distributed.is_initialized():
|
14 |
+
distributed.broadcast(data, src)
|
15 |
+
else:
|
16 |
+
pass
|
17 |
+
|
18 |
+
|
19 |
+
def all_gather(data: List, src):
|
20 |
+
if distributed.is_initialized():
|
21 |
+
distributed.all_gather(data, src)
|
22 |
+
else:
|
23 |
+
data[0] = src
|
24 |
+
|
25 |
+
|
26 |
+
def get_rank():
|
27 |
+
if distributed.is_initialized():
|
28 |
+
return distributed.get_rank()
|
29 |
+
else:
|
30 |
+
return 0
|
31 |
+
|
32 |
+
|
33 |
+
def get_world_size():
|
34 |
+
if distributed.is_initialized():
|
35 |
+
return distributed.get_world_size()
|
36 |
+
else:
|
37 |
+
return 1
|
38 |
+
|
39 |
+
|
40 |
+
def chunk_size(size, rank, world_size):
|
41 |
+
extra = rank < size % world_size
|
42 |
+
return size // world_size + extra
|
experiment.py
ADDED
@@ -0,0 +1,356 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import os
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import pytorch_lightning as pl
|
6 |
+
import torch
|
7 |
+
from pytorch_lightning import loggers as pl_loggers
|
8 |
+
from pytorch_lightning.callbacks import *
|
9 |
+
from torch.cuda import amp
|
10 |
+
from torch.optim.optimizer import Optimizer
|
11 |
+
from torch.utils.data.dataset import TensorDataset
|
12 |
+
from model.seq2seq import DiffusionPredictor
|
13 |
+
|
14 |
+
from config import *
|
15 |
+
from dist_utils import *
|
16 |
+
from renderer import *
|
17 |
+
|
18 |
+
# This part is modified from: https://github.com/phizaz/diffae/blob/master/experiment.py
|
19 |
+
class LitModel(pl.LightningModule):
|
20 |
+
def __init__(self, conf: TrainConfig):
|
21 |
+
super().__init__()
|
22 |
+
assert conf.train_mode != TrainMode.manipulate
|
23 |
+
if conf.seed is not None:
|
24 |
+
pl.seed_everything(conf.seed)
|
25 |
+
|
26 |
+
self.save_hyperparameters(conf.as_dict_jsonable())
|
27 |
+
|
28 |
+
self.conf = conf
|
29 |
+
|
30 |
+
self.model = DiffusionPredictor(conf)
|
31 |
+
|
32 |
+
self.ema_model = copy.deepcopy(self.model)
|
33 |
+
self.ema_model.requires_grad_(False)
|
34 |
+
self.ema_model.eval()
|
35 |
+
|
36 |
+
self.sampler = conf.make_diffusion_conf().make_sampler()
|
37 |
+
self.eval_sampler = conf.make_eval_diffusion_conf().make_sampler()
|
38 |
+
|
39 |
+
# this is shared for both model and latent
|
40 |
+
self.T_sampler = conf.make_T_sampler()
|
41 |
+
|
42 |
+
if conf.train_mode.use_latent_net():
|
43 |
+
self.latent_sampler = conf.make_latent_diffusion_conf(
|
44 |
+
).make_sampler()
|
45 |
+
self.eval_latent_sampler = conf.make_latent_eval_diffusion_conf(
|
46 |
+
).make_sampler()
|
47 |
+
else:
|
48 |
+
self.latent_sampler = None
|
49 |
+
self.eval_latent_sampler = None
|
50 |
+
|
51 |
+
# initial variables for consistent sampling
|
52 |
+
self.register_buffer(
|
53 |
+
'x_T',
|
54 |
+
torch.randn(conf.sample_size, 3, conf.img_size, conf.img_size))
|
55 |
+
|
56 |
+
|
57 |
+
def render(self, start, motion_direction_start, audio_driven, face_location, face_scale, ypr_info, noisyT, step_T, control_flag):
|
58 |
+
if step_T is None:
|
59 |
+
sampler = self.eval_sampler
|
60 |
+
else:
|
61 |
+
sampler = self.conf._make_diffusion_conf(step_T).make_sampler()
|
62 |
+
|
63 |
+
pred_img = render_condition(self.conf,
|
64 |
+
self.ema_model,
|
65 |
+
sampler, start, motion_direction_start, audio_driven, face_location, face_scale, ypr_info, noisyT, control_flag)
|
66 |
+
return pred_img
|
67 |
+
|
68 |
+
def forward(self, noise=None, x_start=None, ema_model: bool = False):
|
69 |
+
with amp.autocast(False):
|
70 |
+
if not self.disable_ema:
|
71 |
+
model = self.ema_model
|
72 |
+
else:
|
73 |
+
model = self.model
|
74 |
+
gen = self.eval_sampler.sample(model=model,
|
75 |
+
noise=noise,
|
76 |
+
x_start=x_start)
|
77 |
+
return gen
|
78 |
+
|
79 |
+
def setup(self, stage=None) -> None:
|
80 |
+
"""
|
81 |
+
make datasets & seeding each worker separately
|
82 |
+
"""
|
83 |
+
##############################################
|
84 |
+
# NEED TO SET THE SEED SEPARATELY HERE
|
85 |
+
if self.conf.seed is not None:
|
86 |
+
seed = self.conf.seed * get_world_size() + self.global_rank
|
87 |
+
np.random.seed(seed)
|
88 |
+
torch.manual_seed(seed)
|
89 |
+
torch.cuda.manual_seed(seed)
|
90 |
+
print('local seed:', seed)
|
91 |
+
##############################################
|
92 |
+
|
93 |
+
self.train_data = self.conf.make_dataset()
|
94 |
+
print('train data:', len(self.train_data))
|
95 |
+
self.val_data = self.train_data
|
96 |
+
print('val data:', len(self.val_data))
|
97 |
+
|
98 |
+
def _train_dataloader(self, drop_last=True):
|
99 |
+
"""
|
100 |
+
really make the dataloader
|
101 |
+
"""
|
102 |
+
# make sure to use the fraction of batch size
|
103 |
+
# the batch size is global!
|
104 |
+
conf = self.conf.clone()
|
105 |
+
conf.batch_size = self.batch_size
|
106 |
+
|
107 |
+
dataloader = conf.make_loader(self.train_data,
|
108 |
+
shuffle=True,
|
109 |
+
drop_last=drop_last)
|
110 |
+
return dataloader
|
111 |
+
|
112 |
+
def train_dataloader(self):
|
113 |
+
"""
|
114 |
+
return the dataloader, if diffusion mode => return image dataset
|
115 |
+
if latent mode => return the inferred latent dataset
|
116 |
+
"""
|
117 |
+
print('on train dataloader start ...')
|
118 |
+
if self.conf.train_mode.require_dataset_infer():
|
119 |
+
if self.conds is None:
|
120 |
+
# usually we load self.conds from a file
|
121 |
+
# so we do not need to do this again!
|
122 |
+
self.conds = self.infer_whole_dataset()
|
123 |
+
# need to use float32! unless the mean & std will be off!
|
124 |
+
# (1, c)
|
125 |
+
self.conds_mean.data = self.conds.float().mean(dim=0,
|
126 |
+
keepdim=True)
|
127 |
+
self.conds_std.data = self.conds.float().std(dim=0,
|
128 |
+
keepdim=True)
|
129 |
+
print('mean:', self.conds_mean.mean(), 'std:',
|
130 |
+
self.conds_std.mean())
|
131 |
+
|
132 |
+
# return the dataset with pre-calculated conds
|
133 |
+
conf = self.conf.clone()
|
134 |
+
conf.batch_size = self.batch_size
|
135 |
+
data = TensorDataset(self.conds)
|
136 |
+
return conf.make_loader(data, shuffle=True)
|
137 |
+
else:
|
138 |
+
return self._train_dataloader()
|
139 |
+
|
140 |
+
@property
|
141 |
+
def batch_size(self):
|
142 |
+
"""
|
143 |
+
local batch size for each worker
|
144 |
+
"""
|
145 |
+
ws = get_world_size()
|
146 |
+
assert self.conf.batch_size % ws == 0
|
147 |
+
return self.conf.batch_size // ws
|
148 |
+
|
149 |
+
@property
|
150 |
+
def num_samples(self):
|
151 |
+
"""
|
152 |
+
(global) batch size * iterations
|
153 |
+
"""
|
154 |
+
# batch size here is global!
|
155 |
+
# global_step already takes into account the accum batches
|
156 |
+
return self.global_step * self.conf.batch_size_effective
|
157 |
+
|
158 |
+
def is_last_accum(self, batch_idx):
|
159 |
+
"""
|
160 |
+
is it the last gradient accumulation loop?
|
161 |
+
used with gradient_accum > 1 and to see if the optimizer will perform "step" in this iteration or not
|
162 |
+
"""
|
163 |
+
return (batch_idx + 1) % self.conf.accum_batches == 0
|
164 |
+
|
165 |
+
def training_step(self, batch, batch_idx):
|
166 |
+
"""
|
167 |
+
given an input, calculate the loss function
|
168 |
+
no optimization at this stage.
|
169 |
+
"""
|
170 |
+
with amp.autocast(False):
|
171 |
+
motion_start = batch['motion_start'] # torch.Size([B, 512])
|
172 |
+
motion_direction = batch['motion_direction'] # torch.Size([B, 125, 20])
|
173 |
+
audio_feats = batch['audio_feats'].float() # torch.Size([B, 25, 250, 1024])
|
174 |
+
face_location = batch['face_location'].float() # torch.Size([B, 125])
|
175 |
+
face_scale = batch['face_scale'].float() # torch.Size([B, 125, 1])
|
176 |
+
yaw_pitch_roll = batch['yaw_pitch_roll'].float() # torch.Size([B, 125, 3])
|
177 |
+
motion_direction_start = batch['motion_direction_start'].float() # torch.Size([B, 20])
|
178 |
+
|
179 |
+
# import pdb; pdb.set_trace()
|
180 |
+
if self.conf.train_mode == TrainMode.diffusion:
|
181 |
+
"""
|
182 |
+
main training mode!!!
|
183 |
+
"""
|
184 |
+
# with numpy seed we have the problem that the sample t's are related!
|
185 |
+
t, weight = self.T_sampler.sample(len(motion_start), motion_start.device)
|
186 |
+
losses = self.sampler.training_losses(model=self.model,
|
187 |
+
motion_direction_start=motion_direction_start,
|
188 |
+
motion_target=motion_direction,
|
189 |
+
motion_start=motion_start,
|
190 |
+
audio_feats=audio_feats,
|
191 |
+
face_location=face_location,
|
192 |
+
face_scale=face_scale,
|
193 |
+
yaw_pitch_roll=yaw_pitch_roll,
|
194 |
+
t=t)
|
195 |
+
else:
|
196 |
+
raise NotImplementedError()
|
197 |
+
|
198 |
+
loss = losses['loss'].mean()
|
199 |
+
# divide by accum batches to make the accumulated gradient exact!
|
200 |
+
for key in losses.keys():
|
201 |
+
losses[key] = self.all_gather(losses[key]).mean()
|
202 |
+
|
203 |
+
if self.global_rank == 0:
|
204 |
+
self.logger.experiment.add_scalar('loss', losses['loss'],
|
205 |
+
self.num_samples)
|
206 |
+
for key in losses:
|
207 |
+
self.logger.experiment.add_scalar(
|
208 |
+
f'loss/{key}', losses[key], self.num_samples)
|
209 |
+
|
210 |
+
return {'loss': loss}
|
211 |
+
|
212 |
+
def on_train_batch_end(self, outputs, batch, batch_idx: int,
|
213 |
+
dataloader_idx: int) -> None:
|
214 |
+
"""
|
215 |
+
after each training step ...
|
216 |
+
"""
|
217 |
+
if self.is_last_accum(batch_idx):
|
218 |
+
|
219 |
+
if self.conf.train_mode == TrainMode.latent_diffusion:
|
220 |
+
# it trains only the latent hence change only the latent
|
221 |
+
ema(self.model.latent_net, self.ema_model.latent_net,
|
222 |
+
self.conf.ema_decay)
|
223 |
+
else:
|
224 |
+
ema(self.model, self.ema_model, self.conf.ema_decay)
|
225 |
+
|
226 |
+
def on_before_optimizer_step(self, optimizer: Optimizer,
|
227 |
+
optimizer_idx: int) -> None:
|
228 |
+
# fix the fp16 + clip grad norm problem with pytorch lightinng
|
229 |
+
# this is the currently correct way to do it
|
230 |
+
if self.conf.grad_clip > 0:
|
231 |
+
# from trainer.params_grads import grads_norm, iter_opt_params
|
232 |
+
params = [
|
233 |
+
p for group in optimizer.param_groups for p in group['params']
|
234 |
+
]
|
235 |
+
torch.nn.utils.clip_grad_norm_(params,
|
236 |
+
max_norm=self.conf.grad_clip)
|
237 |
+
def configure_optimizers(self):
|
238 |
+
out = {}
|
239 |
+
if self.conf.optimizer == OptimizerType.adam:
|
240 |
+
optim = torch.optim.Adam(self.model.parameters(),
|
241 |
+
lr=self.conf.lr,
|
242 |
+
weight_decay=self.conf.weight_decay)
|
243 |
+
elif self.conf.optimizer == OptimizerType.adamw:
|
244 |
+
optim = torch.optim.AdamW(self.model.parameters(),
|
245 |
+
lr=self.conf.lr,
|
246 |
+
weight_decay=self.conf.weight_decay)
|
247 |
+
else:
|
248 |
+
raise NotImplementedError()
|
249 |
+
out['optimizer'] = optim
|
250 |
+
if self.conf.warmup > 0:
|
251 |
+
sched = torch.optim.lr_scheduler.LambdaLR(optim,
|
252 |
+
lr_lambda=WarmupLR(
|
253 |
+
self.conf.warmup))
|
254 |
+
out['lr_scheduler'] = {
|
255 |
+
'scheduler': sched,
|
256 |
+
'interval': 'step',
|
257 |
+
}
|
258 |
+
return out
|
259 |
+
|
260 |
+
def split_tensor(self, x):
|
261 |
+
"""
|
262 |
+
extract the tensor for a corresponding "worker" in the batch dimension
|
263 |
+
|
264 |
+
Args:
|
265 |
+
x: (n, c)
|
266 |
+
|
267 |
+
Returns: x: (n_local, c)
|
268 |
+
"""
|
269 |
+
n = len(x)
|
270 |
+
rank = self.global_rank
|
271 |
+
world_size = get_world_size()
|
272 |
+
# print(f'rank: {rank}/{world_size}')
|
273 |
+
per_rank = n // world_size
|
274 |
+
return x[rank * per_rank:(rank + 1) * per_rank]
|
275 |
+
|
276 |
+
def ema(source, target, decay):
|
277 |
+
source_dict = source.state_dict()
|
278 |
+
target_dict = target.state_dict()
|
279 |
+
for key in source_dict.keys():
|
280 |
+
target_dict[key].data.copy_(target_dict[key].data * decay +
|
281 |
+
source_dict[key].data * (1 - decay))
|
282 |
+
|
283 |
+
|
284 |
+
class WarmupLR:
|
285 |
+
def __init__(self, warmup) -> None:
|
286 |
+
self.warmup = warmup
|
287 |
+
|
288 |
+
def __call__(self, step):
|
289 |
+
return min(step, self.warmup) / self.warmup
|
290 |
+
|
291 |
+
|
292 |
+
def is_time(num_samples, every, step_size):
|
293 |
+
closest = (num_samples // every) * every
|
294 |
+
return num_samples - closest < step_size
|
295 |
+
|
296 |
+
|
297 |
+
def train(conf: TrainConfig, gpus, nodes=1, mode: str = 'train'):
|
298 |
+
print('conf:', conf.name)
|
299 |
+
# assert not (conf.fp16 and conf.grad_clip > 0
|
300 |
+
# ), 'pytorch lightning has bug with amp + gradient clipping'
|
301 |
+
model = LitModel(conf)
|
302 |
+
|
303 |
+
if not os.path.exists(conf.logdir):
|
304 |
+
os.makedirs(conf.logdir)
|
305 |
+
checkpoint = ModelCheckpoint(dirpath=f'{conf.logdir}',
|
306 |
+
save_last=True,
|
307 |
+
save_top_k=-1,
|
308 |
+
every_n_epochs=10)
|
309 |
+
checkpoint_path = f'{conf.logdir}/last.ckpt'
|
310 |
+
print('ckpt path:', checkpoint_path)
|
311 |
+
if os.path.exists(checkpoint_path):
|
312 |
+
resume = checkpoint_path
|
313 |
+
print('resume!')
|
314 |
+
else:
|
315 |
+
if conf.continue_from is not None:
|
316 |
+
# continue from a checkpoint
|
317 |
+
resume = conf.continue_from.pathcd
|
318 |
+
else:
|
319 |
+
resume = None
|
320 |
+
|
321 |
+
tb_logger = pl_loggers.TensorBoardLogger(save_dir=conf.logdir,
|
322 |
+
name=None,
|
323 |
+
version='')
|
324 |
+
|
325 |
+
# from pytorch_lightning.
|
326 |
+
|
327 |
+
plugins = []
|
328 |
+
if len(gpus) == 1 and nodes == 1:
|
329 |
+
accelerator = None
|
330 |
+
else:
|
331 |
+
accelerator = 'ddp'
|
332 |
+
from pytorch_lightning.plugins import DDPPlugin
|
333 |
+
|
334 |
+
# important for working with gradient checkpoint
|
335 |
+
plugins.append(DDPPlugin(find_unused_parameters=True))
|
336 |
+
|
337 |
+
trainer = pl.Trainer(
|
338 |
+
max_steps=conf.total_samples // conf.batch_size_effective,
|
339 |
+
resume_from_checkpoint=resume,
|
340 |
+
gpus=gpus,
|
341 |
+
num_nodes=nodes,
|
342 |
+
accelerator=accelerator,
|
343 |
+
precision=16 if conf.fp16 else 32,
|
344 |
+
callbacks=[
|
345 |
+
checkpoint,
|
346 |
+
LearningRateMonitor(),
|
347 |
+
],
|
348 |
+
# clip in the model instead
|
349 |
+
# gradient_clip_val=conf.grad_clip,
|
350 |
+
replace_sampler_ddp=True,
|
351 |
+
logger=tb_logger,
|
352 |
+
accumulate_grad_batches=conf.accum_batches,
|
353 |
+
plugins=plugins,
|
354 |
+
)
|
355 |
+
|
356 |
+
trainer.fit(model)
|
face_sr/face_enhancer.py
ADDED
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
|
4 |
+
from gfpgan import GFPGANer
|
5 |
+
|
6 |
+
from tqdm import tqdm
|
7 |
+
|
8 |
+
from .videoio import load_video_to_cv2
|
9 |
+
|
10 |
+
import cv2
|
11 |
+
|
12 |
+
|
13 |
+
class GeneratorWithLen(object):
|
14 |
+
""" From https://stackoverflow.com/a/7460929 """
|
15 |
+
|
16 |
+
def __init__(self, gen, length):
|
17 |
+
self.gen = gen
|
18 |
+
self.length = length
|
19 |
+
|
20 |
+
def __len__(self):
|
21 |
+
return self.length
|
22 |
+
|
23 |
+
def __iter__(self):
|
24 |
+
return self.gen
|
25 |
+
|
26 |
+
def enhancer_list(images, method='gfpgan', bg_upsampler='realesrgan'):
|
27 |
+
gen = enhancer_generator_no_len(images, method=method, bg_upsampler=bg_upsampler)
|
28 |
+
return list(gen)
|
29 |
+
|
30 |
+
def enhancer_generator_with_len(images, method='gfpgan', bg_upsampler='realesrgan'):
|
31 |
+
""" Provide a generator with a __len__ method so that it can passed to functions that
|
32 |
+
call len()"""
|
33 |
+
|
34 |
+
if os.path.isfile(images): # handle video to images
|
35 |
+
# TODO: Create a generator version of load_video_to_cv2
|
36 |
+
images = load_video_to_cv2(images)
|
37 |
+
|
38 |
+
gen = enhancer_generator_no_len(images, method=method, bg_upsampler=bg_upsampler)
|
39 |
+
gen_with_len = GeneratorWithLen(gen, len(images))
|
40 |
+
return gen_with_len
|
41 |
+
|
42 |
+
def enhancer_generator_no_len(images, method='gfpgan', bg_upsampler='realesrgan'):
|
43 |
+
""" Provide a generator function so that all of the enhanced images don't need
|
44 |
+
to be stored in memory at the same time. This can save tons of RAM compared to
|
45 |
+
the enhancer function. """
|
46 |
+
|
47 |
+
print('face enhancer....')
|
48 |
+
if not isinstance(images, list) and os.path.isfile(images): # handle video to images
|
49 |
+
images = load_video_to_cv2(images)
|
50 |
+
|
51 |
+
# ------------------------ set up GFPGAN restorer ------------------------
|
52 |
+
if method == 'gfpgan':
|
53 |
+
arch = 'clean'
|
54 |
+
channel_multiplier = 2
|
55 |
+
model_name = 'GFPGANv1.4'
|
56 |
+
url = 'https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth'
|
57 |
+
elif method == 'RestoreFormer':
|
58 |
+
arch = 'RestoreFormer'
|
59 |
+
channel_multiplier = 2
|
60 |
+
model_name = 'RestoreFormer'
|
61 |
+
url = 'https://github.com/TencentARC/GFPGAN/releases/download/v1.3.4/RestoreFormer.pth'
|
62 |
+
elif method == 'codeformer': # TODO:
|
63 |
+
arch = 'CodeFormer'
|
64 |
+
channel_multiplier = 2
|
65 |
+
model_name = 'CodeFormer'
|
66 |
+
url = 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer.pth'
|
67 |
+
else:
|
68 |
+
raise ValueError(f'Wrong model version {method}.')
|
69 |
+
|
70 |
+
|
71 |
+
# ------------------------ set up background upsampler ------------------------
|
72 |
+
if bg_upsampler == 'realesrgan':
|
73 |
+
if not torch.cuda.is_available(): # CPU
|
74 |
+
import warnings
|
75 |
+
warnings.warn('The unoptimized RealESRGAN is slow on CPU. We do not use it. '
|
76 |
+
'If you really want to use it, please modify the corresponding codes.')
|
77 |
+
bg_upsampler = None
|
78 |
+
else:
|
79 |
+
from basicsr.archs.rrdbnet_arch import RRDBNet
|
80 |
+
from realesrgan import RealESRGANer
|
81 |
+
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=2)
|
82 |
+
bg_upsampler = RealESRGANer(
|
83 |
+
scale=2,
|
84 |
+
model_path='https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth',
|
85 |
+
model=model,
|
86 |
+
tile=400,
|
87 |
+
tile_pad=10,
|
88 |
+
pre_pad=0,
|
89 |
+
half=True) # need to set False in CPU mode
|
90 |
+
else:
|
91 |
+
bg_upsampler = None
|
92 |
+
|
93 |
+
# determine model paths
|
94 |
+
model_path = os.path.join('gfpgan/weights', model_name + '.pth')
|
95 |
+
|
96 |
+
if not os.path.isfile(model_path):
|
97 |
+
model_path = os.path.join('checkpoints', model_name + '.pth')
|
98 |
+
|
99 |
+
if not os.path.isfile(model_path):
|
100 |
+
# download pre-trained models from url
|
101 |
+
model_path = url
|
102 |
+
|
103 |
+
restorer = GFPGANer(
|
104 |
+
model_path=model_path,
|
105 |
+
upscale=2,
|
106 |
+
arch=arch,
|
107 |
+
channel_multiplier=channel_multiplier,
|
108 |
+
bg_upsampler=bg_upsampler)
|
109 |
+
|
110 |
+
# ------------------------ restore ------------------------
|
111 |
+
for idx in tqdm(range(len(images)), 'Face Enhancer:'):
|
112 |
+
|
113 |
+
img = cv2.cvtColor(images[idx], cv2.COLOR_RGB2BGR)
|
114 |
+
|
115 |
+
# restore faces and background if necessary
|
116 |
+
cropped_faces, restored_faces, r_img = restorer.enhance(
|
117 |
+
img,
|
118 |
+
has_aligned=False,
|
119 |
+
only_center_face=False,
|
120 |
+
paste_back=True)
|
121 |
+
|
122 |
+
r_img = cv2.cvtColor(r_img, cv2.COLOR_BGR2RGB)
|
123 |
+
yield r_img
|
face_sr/videoio.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import shutil
|
2 |
+
import uuid
|
3 |
+
|
4 |
+
import os
|
5 |
+
|
6 |
+
import cv2
|
7 |
+
|
8 |
+
def load_video_to_cv2(input_path):
|
9 |
+
video_stream = cv2.VideoCapture(input_path)
|
10 |
+
fps = video_stream.get(cv2.CAP_PROP_FPS)
|
11 |
+
full_frames = []
|
12 |
+
while 1:
|
13 |
+
still_reading, frame = video_stream.read()
|
14 |
+
if not still_reading:
|
15 |
+
video_stream.release()
|
16 |
+
break
|
17 |
+
full_frames.append(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
|
18 |
+
return full_frames
|
19 |
+
|
20 |
+
def save_video_with_watermark(video, audio, save_path, watermark=False):
|
21 |
+
temp_file = str(uuid.uuid4())+'.mp4'
|
22 |
+
cmd = r'ffmpeg -y -hide_banner -loglevel error -i "%s" -i "%s" -vcodec copy "%s"' % (video, audio, temp_file)
|
23 |
+
os.system(cmd)
|
24 |
+
|
25 |
+
if watermark is False:
|
26 |
+
shutil.move(temp_file, save_path)
|
27 |
+
else:
|
28 |
+
# watermark
|
29 |
+
try:
|
30 |
+
##### check if stable-diffusion-webui
|
31 |
+
import webui
|
32 |
+
from modules import paths
|
33 |
+
watarmark_path = paths.script_path+"/extensions/SadTalker/docs/sadtalker_logo.png"
|
34 |
+
except:
|
35 |
+
# get the root path of sadtalker.
|
36 |
+
dir_path = os.path.dirname(os.path.realpath(__file__))
|
37 |
+
watarmark_path = dir_path+"/../../docs/sadtalker_logo.png"
|
38 |
+
|
39 |
+
cmd = r'ffmpeg -y -hide_banner -loglevel error -i "%s" -i "%s" -filter_complex "[1]scale=100:-1[wm];[0][wm]overlay=(main_w-overlay_w)-10:10" "%s"' % (temp_file, watarmark_path, save_path)
|
40 |
+
os.system(cmd)
|
41 |
+
os.remove(temp_file)
|
model/__init__.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Union
|
2 |
+
from .unet import BeatGANsUNetModel, BeatGANsUNetConfig
|
3 |
+
from .unet_autoenc import BeatGANsAutoencConfig, BeatGANsAutoencModel
|
4 |
+
|
5 |
+
Model = Union[BeatGANsUNetModel, BeatGANsAutoencModel]
|
6 |
+
ModelConfig = Union[BeatGANsUNetConfig, BeatGANsAutoencConfig]
|
model/base.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (C) 2021. Huawei Technologies Co., Ltd. All rights reserved.
|
2 |
+
# This program is free software; you can redistribute it and/or modify
|
3 |
+
# it under the terms of the MIT License.
|
4 |
+
# This program is distributed in the hope that it will be useful,
|
5 |
+
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
6 |
+
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
7 |
+
# MIT License for more details.
|
8 |
+
|
9 |
+
import numpy as np
|
10 |
+
import torch
|
11 |
+
|
12 |
+
|
13 |
+
class BaseModule(torch.nn.Module):
|
14 |
+
def __init__(self):
|
15 |
+
super(BaseModule, self).__init__()
|
16 |
+
|
17 |
+
@property
|
18 |
+
def nparams(self):
|
19 |
+
"""
|
20 |
+
Returns number of trainable parameters of the module.
|
21 |
+
"""
|
22 |
+
num_params = 0
|
23 |
+
for name, param in self.named_parameters():
|
24 |
+
if param.requires_grad:
|
25 |
+
num_params += np.prod(param.detach().cpu().numpy().shape)
|
26 |
+
return num_params
|
27 |
+
|
28 |
+
|
29 |
+
def relocate_input(self, x: list):
|
30 |
+
"""
|
31 |
+
Relocates provided tensors to the same device set for the module.
|
32 |
+
"""
|
33 |
+
device = next(self.parameters()).device
|
34 |
+
for i in range(len(x)):
|
35 |
+
if isinstance(x[i], torch.Tensor) and x[i].device != device:
|
36 |
+
x[i] = x[i].to(device)
|
37 |
+
return x
|
model/blocks.py
ADDED
@@ -0,0 +1,567 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
from abc import abstractmethod
|
3 |
+
from dataclasses import dataclass
|
4 |
+
from numbers import Number
|
5 |
+
|
6 |
+
import torch as th
|
7 |
+
import torch.nn.functional as F
|
8 |
+
from choices import *
|
9 |
+
from config_base import BaseConfig
|
10 |
+
from torch import nn
|
11 |
+
|
12 |
+
from .nn import (avg_pool_nd, conv_nd, linear, normalization,
|
13 |
+
timestep_embedding, torch_checkpoint, zero_module)
|
14 |
+
|
15 |
+
|
16 |
+
class ScaleAt(Enum):
|
17 |
+
after_norm = 'afternorm'
|
18 |
+
|
19 |
+
|
20 |
+
class TimestepBlock(nn.Module):
|
21 |
+
"""
|
22 |
+
Any module where forward() takes timestep embeddings as a second argument.
|
23 |
+
"""
|
24 |
+
@abstractmethod
|
25 |
+
def forward(self, x, emb=None, cond=None, lateral=None):
|
26 |
+
"""
|
27 |
+
Apply the module to `x` given `emb` timestep embeddings.
|
28 |
+
"""
|
29 |
+
|
30 |
+
|
31 |
+
class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
|
32 |
+
"""
|
33 |
+
A sequential module that passes timestep embeddings to the children that
|
34 |
+
support it as an extra input.
|
35 |
+
"""
|
36 |
+
def forward(self, x, emb=None, cond=None, lateral=None):
|
37 |
+
for layer in self:
|
38 |
+
if isinstance(layer, TimestepBlock):
|
39 |
+
x = layer(x, emb=emb, cond=cond, lateral=lateral)
|
40 |
+
else:
|
41 |
+
x = layer(x)
|
42 |
+
return x
|
43 |
+
|
44 |
+
|
45 |
+
@dataclass
|
46 |
+
class ResBlockConfig(BaseConfig):
|
47 |
+
channels: int
|
48 |
+
emb_channels: int
|
49 |
+
dropout: float
|
50 |
+
out_channels: int = None
|
51 |
+
# condition the resblock with time (and encoder's output)
|
52 |
+
use_condition: bool = True
|
53 |
+
# whether to use 3x3 conv for skip path when the channels aren't matched
|
54 |
+
use_conv: bool = False
|
55 |
+
# dimension of conv (always 2 = 2d)
|
56 |
+
dims: int = 2
|
57 |
+
# gradient checkpoint
|
58 |
+
use_checkpoint: bool = False
|
59 |
+
up: bool = False
|
60 |
+
down: bool = False
|
61 |
+
# whether to condition with both time & encoder's output
|
62 |
+
two_cond: bool = False
|
63 |
+
# number of encoders' output channels
|
64 |
+
cond_emb_channels: int = None
|
65 |
+
# suggest: False
|
66 |
+
has_lateral: bool = False
|
67 |
+
lateral_channels: int = None
|
68 |
+
# whether to init the convolution with zero weights
|
69 |
+
# this is default from BeatGANs and seems to help learning
|
70 |
+
use_zero_module: bool = True
|
71 |
+
|
72 |
+
def __post_init__(self):
|
73 |
+
self.out_channels = self.out_channels or self.channels
|
74 |
+
self.cond_emb_channels = self.cond_emb_channels or self.emb_channels
|
75 |
+
|
76 |
+
def make_model(self):
|
77 |
+
return ResBlock(self)
|
78 |
+
|
79 |
+
|
80 |
+
class ResBlock(TimestepBlock):
|
81 |
+
"""
|
82 |
+
A residual block that can optionally change the number of channels.
|
83 |
+
|
84 |
+
total layers:
|
85 |
+
in_layers
|
86 |
+
- norm
|
87 |
+
- act
|
88 |
+
- conv
|
89 |
+
out_layers
|
90 |
+
- norm
|
91 |
+
- (modulation)
|
92 |
+
- act
|
93 |
+
- conv
|
94 |
+
"""
|
95 |
+
def __init__(self, conf: ResBlockConfig):
|
96 |
+
super().__init__()
|
97 |
+
self.conf = conf
|
98 |
+
|
99 |
+
#############################
|
100 |
+
# IN LAYERS
|
101 |
+
#############################
|
102 |
+
assert conf.lateral_channels is None
|
103 |
+
layers = [
|
104 |
+
normalization(conf.channels),
|
105 |
+
nn.SiLU(),
|
106 |
+
conv_nd(conf.dims, conf.channels, conf.out_channels, 3, padding=1)
|
107 |
+
]
|
108 |
+
self.in_layers = nn.Sequential(*layers)
|
109 |
+
|
110 |
+
self.updown = conf.up or conf.down
|
111 |
+
|
112 |
+
if conf.up:
|
113 |
+
self.h_upd = Upsample(conf.channels, False, conf.dims)
|
114 |
+
self.x_upd = Upsample(conf.channels, False, conf.dims)
|
115 |
+
elif conf.down:
|
116 |
+
self.h_upd = Downsample(conf.channels, False, conf.dims)
|
117 |
+
self.x_upd = Downsample(conf.channels, False, conf.dims)
|
118 |
+
else:
|
119 |
+
self.h_upd = self.x_upd = nn.Identity()
|
120 |
+
|
121 |
+
#############################
|
122 |
+
# OUT LAYERS CONDITIONS
|
123 |
+
#############################
|
124 |
+
if conf.use_condition:
|
125 |
+
# condition layers for the out_layers
|
126 |
+
self.emb_layers = nn.Sequential(
|
127 |
+
nn.SiLU(),
|
128 |
+
linear(conf.emb_channels, 2 * conf.out_channels),
|
129 |
+
)
|
130 |
+
|
131 |
+
if conf.two_cond:
|
132 |
+
self.cond_emb_layers = nn.Sequential(
|
133 |
+
nn.SiLU(),
|
134 |
+
linear(conf.cond_emb_channels, conf.out_channels),
|
135 |
+
)
|
136 |
+
#############################
|
137 |
+
# OUT LAYERS (ignored when there is no condition)
|
138 |
+
#############################
|
139 |
+
# original version
|
140 |
+
conv = conv_nd(conf.dims,
|
141 |
+
conf.out_channels,
|
142 |
+
conf.out_channels,
|
143 |
+
3,
|
144 |
+
padding=1)
|
145 |
+
if conf.use_zero_module:
|
146 |
+
# zere out the weights
|
147 |
+
# it seems to help training
|
148 |
+
conv = zero_module(conv)
|
149 |
+
|
150 |
+
# construct the layers
|
151 |
+
# - norm
|
152 |
+
# - (modulation)
|
153 |
+
# - act
|
154 |
+
# - dropout
|
155 |
+
# - conv
|
156 |
+
layers = []
|
157 |
+
layers += [
|
158 |
+
normalization(conf.out_channels),
|
159 |
+
nn.SiLU(),
|
160 |
+
nn.Dropout(p=conf.dropout),
|
161 |
+
conv,
|
162 |
+
]
|
163 |
+
self.out_layers = nn.Sequential(*layers)
|
164 |
+
|
165 |
+
#############################
|
166 |
+
# SKIP LAYERS
|
167 |
+
#############################
|
168 |
+
if conf.out_channels == conf.channels:
|
169 |
+
# cannot be used with gatedconv, also gatedconv is alsways used as the first block
|
170 |
+
self.skip_connection = nn.Identity()
|
171 |
+
else:
|
172 |
+
if conf.use_conv:
|
173 |
+
kernel_size = 3
|
174 |
+
padding = 1
|
175 |
+
else:
|
176 |
+
kernel_size = 1
|
177 |
+
padding = 0
|
178 |
+
|
179 |
+
self.skip_connection = conv_nd(conf.dims,
|
180 |
+
conf.channels,
|
181 |
+
conf.out_channels,
|
182 |
+
kernel_size,
|
183 |
+
padding=padding)
|
184 |
+
|
185 |
+
def forward(self, x, emb=None, cond=None, lateral=None):
|
186 |
+
"""
|
187 |
+
Apply the block to a Tensor, conditioned on a timestep embedding.
|
188 |
+
|
189 |
+
Args:
|
190 |
+
x: input
|
191 |
+
lateral: lateral connection from the encoder
|
192 |
+
"""
|
193 |
+
return torch_checkpoint(self._forward, (x, emb, cond, lateral),
|
194 |
+
self.conf.use_checkpoint)
|
195 |
+
|
196 |
+
def _forward(
|
197 |
+
self,
|
198 |
+
x,
|
199 |
+
emb=None,
|
200 |
+
cond=None,
|
201 |
+
lateral=None,
|
202 |
+
):
|
203 |
+
"""
|
204 |
+
Args:
|
205 |
+
lateral: required if "has_lateral" and non-gated, with gated, it can be supplied optionally
|
206 |
+
"""
|
207 |
+
if self.conf.has_lateral:
|
208 |
+
# lateral may be supplied even if it doesn't require
|
209 |
+
# the model will take the lateral only if "has_lateral"
|
210 |
+
assert lateral is not None
|
211 |
+
x = th.cat([x, lateral], dim=1)
|
212 |
+
|
213 |
+
if self.updown:
|
214 |
+
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
|
215 |
+
h = in_rest(x)
|
216 |
+
h = self.h_upd(h)
|
217 |
+
x = self.x_upd(x)
|
218 |
+
h = in_conv(h)
|
219 |
+
else:
|
220 |
+
h = self.in_layers(x)
|
221 |
+
|
222 |
+
if self.conf.use_condition:
|
223 |
+
# it's possible that the network may not receieve the time emb
|
224 |
+
# this happens with autoenc and setting the time_at
|
225 |
+
if emb is not None:
|
226 |
+
emb_out = self.emb_layers(emb).type(h.dtype)
|
227 |
+
else:
|
228 |
+
emb_out = None
|
229 |
+
|
230 |
+
if self.conf.two_cond:
|
231 |
+
# it's possible that the network is two_cond
|
232 |
+
# but it doesn't get the second condition
|
233 |
+
# in which case, we ignore the second condition
|
234 |
+
# and treat as if the network has one condition
|
235 |
+
if cond is None:
|
236 |
+
cond_out = None
|
237 |
+
else:
|
238 |
+
cond_out = self.cond_emb_layers(cond).type(h.dtype)
|
239 |
+
|
240 |
+
if cond_out is not None:
|
241 |
+
while len(cond_out.shape) < len(h.shape):
|
242 |
+
cond_out = cond_out[..., None]
|
243 |
+
else:
|
244 |
+
cond_out = None
|
245 |
+
|
246 |
+
# this is the new refactored code
|
247 |
+
h = apply_conditions(
|
248 |
+
h=h,
|
249 |
+
emb=emb_out,
|
250 |
+
cond=cond_out,
|
251 |
+
layers=self.out_layers,
|
252 |
+
scale_bias=1,
|
253 |
+
in_channels=self.conf.out_channels,
|
254 |
+
up_down_layer=None,
|
255 |
+
)
|
256 |
+
|
257 |
+
return self.skip_connection(x) + h
|
258 |
+
|
259 |
+
|
260 |
+
def apply_conditions(
|
261 |
+
h,
|
262 |
+
emb=None,
|
263 |
+
cond=None,
|
264 |
+
layers: nn.Sequential = None,
|
265 |
+
scale_bias: float = 1,
|
266 |
+
in_channels: int = 512,
|
267 |
+
up_down_layer: nn.Module = None,
|
268 |
+
):
|
269 |
+
"""
|
270 |
+
apply conditions on the feature maps
|
271 |
+
|
272 |
+
Args:
|
273 |
+
emb: time conditional (ready to scale + shift)
|
274 |
+
cond: encoder's conditional (read to scale + shift)
|
275 |
+
"""
|
276 |
+
two_cond = emb is not None and cond is not None
|
277 |
+
|
278 |
+
if emb is not None:
|
279 |
+
# adjusting shapes
|
280 |
+
while len(emb.shape) < len(h.shape):
|
281 |
+
emb = emb[..., None]
|
282 |
+
|
283 |
+
if two_cond:
|
284 |
+
# adjusting shapes
|
285 |
+
while len(cond.shape) < len(h.shape):
|
286 |
+
cond = cond[..., None]
|
287 |
+
# time first
|
288 |
+
scale_shifts = [emb, cond]
|
289 |
+
else:
|
290 |
+
# "cond" is not used with single cond mode
|
291 |
+
scale_shifts = [emb]
|
292 |
+
|
293 |
+
# support scale, shift or shift only
|
294 |
+
for i, each in enumerate(scale_shifts):
|
295 |
+
if each is None:
|
296 |
+
# special case: the condition is not provided
|
297 |
+
a = None
|
298 |
+
b = None
|
299 |
+
else:
|
300 |
+
if each.shape[1] == in_channels * 2:
|
301 |
+
a, b = th.chunk(each, 2, dim=1)
|
302 |
+
else:
|
303 |
+
a = each
|
304 |
+
b = None
|
305 |
+
scale_shifts[i] = (a, b)
|
306 |
+
|
307 |
+
# condition scale bias could be a list
|
308 |
+
if isinstance(scale_bias, Number):
|
309 |
+
biases = [scale_bias] * len(scale_shifts)
|
310 |
+
else:
|
311 |
+
# a list
|
312 |
+
biases = scale_bias
|
313 |
+
|
314 |
+
# default, the scale & shift are applied after the group norm but BEFORE SiLU
|
315 |
+
pre_layers, post_layers = layers[0], layers[1:]
|
316 |
+
|
317 |
+
# spilt the post layer to be able to scale up or down before conv
|
318 |
+
# post layers will contain only the conv
|
319 |
+
mid_layers, post_layers = post_layers[:-2], post_layers[-2:]
|
320 |
+
|
321 |
+
h = pre_layers(h)
|
322 |
+
# scale and shift for each condition
|
323 |
+
for i, (scale, shift) in enumerate(scale_shifts):
|
324 |
+
# if scale is None, it indicates that the condition is not provided
|
325 |
+
if scale is not None:
|
326 |
+
h = h * (biases[i] + scale)
|
327 |
+
if shift is not None:
|
328 |
+
h = h + shift
|
329 |
+
h = mid_layers(h)
|
330 |
+
|
331 |
+
# upscale or downscale if any just before the last conv
|
332 |
+
if up_down_layer is not None:
|
333 |
+
h = up_down_layer(h)
|
334 |
+
h = post_layers(h)
|
335 |
+
return h
|
336 |
+
|
337 |
+
|
338 |
+
class Upsample(nn.Module):
|
339 |
+
"""
|
340 |
+
An upsampling layer with an optional convolution.
|
341 |
+
|
342 |
+
:param channels: channels in the inputs and outputs.
|
343 |
+
:param use_conv: a bool determining if a convolution is applied.
|
344 |
+
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
|
345 |
+
upsampling occurs in the inner-two dimensions.
|
346 |
+
"""
|
347 |
+
def __init__(self, channels, use_conv, dims=2, out_channels=None):
|
348 |
+
super().__init__()
|
349 |
+
self.channels = channels
|
350 |
+
self.out_channels = out_channels or channels
|
351 |
+
self.use_conv = use_conv
|
352 |
+
self.dims = dims
|
353 |
+
if use_conv:
|
354 |
+
self.conv = conv_nd(dims,
|
355 |
+
self.channels,
|
356 |
+
self.out_channels,
|
357 |
+
3,
|
358 |
+
padding=1)
|
359 |
+
|
360 |
+
def forward(self, x):
|
361 |
+
assert x.shape[1] == self.channels
|
362 |
+
if self.dims == 3:
|
363 |
+
x = F.interpolate(x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2),
|
364 |
+
mode="nearest")
|
365 |
+
else:
|
366 |
+
x = F.interpolate(x, scale_factor=2, mode="nearest")
|
367 |
+
if self.use_conv:
|
368 |
+
x = self.conv(x)
|
369 |
+
return x
|
370 |
+
|
371 |
+
|
372 |
+
class Downsample(nn.Module):
|
373 |
+
"""
|
374 |
+
A downsampling layer with an optional convolution.
|
375 |
+
|
376 |
+
:param channels: channels in the inputs and outputs.
|
377 |
+
:param use_conv: a bool determining if a convolution is applied.
|
378 |
+
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
|
379 |
+
downsampling occurs in the inner-two dimensions.
|
380 |
+
"""
|
381 |
+
def __init__(self, channels, use_conv, dims=2, out_channels=None):
|
382 |
+
super().__init__()
|
383 |
+
self.channels = channels
|
384 |
+
self.out_channels = out_channels or channels
|
385 |
+
self.use_conv = use_conv
|
386 |
+
self.dims = dims
|
387 |
+
stride = 2 if dims != 3 else (1, 2, 2)
|
388 |
+
if use_conv:
|
389 |
+
self.op = conv_nd(dims,
|
390 |
+
self.channels,
|
391 |
+
self.out_channels,
|
392 |
+
3,
|
393 |
+
stride=stride,
|
394 |
+
padding=1)
|
395 |
+
else:
|
396 |
+
assert self.channels == self.out_channels
|
397 |
+
self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
|
398 |
+
|
399 |
+
def forward(self, x):
|
400 |
+
assert x.shape[1] == self.channels
|
401 |
+
return self.op(x)
|
402 |
+
|
403 |
+
|
404 |
+
class AttentionBlock(nn.Module):
|
405 |
+
"""
|
406 |
+
An attention block that allows spatial positions to attend to each other.
|
407 |
+
|
408 |
+
Originally ported from here, but adapted to the N-d case.
|
409 |
+
https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66.
|
410 |
+
"""
|
411 |
+
def __init__(
|
412 |
+
self,
|
413 |
+
channels,
|
414 |
+
num_heads=1,
|
415 |
+
num_head_channels=-1,
|
416 |
+
use_checkpoint=False,
|
417 |
+
use_new_attention_order=False,
|
418 |
+
):
|
419 |
+
super().__init__()
|
420 |
+
self.channels = channels
|
421 |
+
if num_head_channels == -1:
|
422 |
+
self.num_heads = num_heads
|
423 |
+
else:
|
424 |
+
assert (
|
425 |
+
channels % num_head_channels == 0
|
426 |
+
), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}"
|
427 |
+
self.num_heads = channels // num_head_channels
|
428 |
+
self.use_checkpoint = use_checkpoint
|
429 |
+
self.norm = normalization(channels)
|
430 |
+
self.qkv = conv_nd(1, channels, channels * 3, 1)
|
431 |
+
if use_new_attention_order:
|
432 |
+
# split qkv before split heads
|
433 |
+
self.attention = QKVAttention(self.num_heads)
|
434 |
+
else:
|
435 |
+
# split heads before split qkv
|
436 |
+
self.attention = QKVAttentionLegacy(self.num_heads)
|
437 |
+
|
438 |
+
self.proj_out = zero_module(conv_nd(1, channels, channels, 1))
|
439 |
+
|
440 |
+
def forward(self, x):
|
441 |
+
return torch_checkpoint(self._forward, (x, ), self.use_checkpoint)
|
442 |
+
|
443 |
+
def _forward(self, x):
|
444 |
+
b, c, *spatial = x.shape
|
445 |
+
x = x.reshape(b, c, -1)
|
446 |
+
qkv = self.qkv(self.norm(x))
|
447 |
+
h = self.attention(qkv)
|
448 |
+
h = self.proj_out(h)
|
449 |
+
return (x + h).reshape(b, c, *spatial)
|
450 |
+
|
451 |
+
|
452 |
+
def count_flops_attn(model, _x, y):
|
453 |
+
"""
|
454 |
+
A counter for the `thop` package to count the operations in an
|
455 |
+
attention operation.
|
456 |
+
Meant to be used like:
|
457 |
+
macs, params = thop.profile(
|
458 |
+
model,
|
459 |
+
inputs=(inputs, timestamps),
|
460 |
+
custom_ops={QKVAttention: QKVAttention.count_flops},
|
461 |
+
)
|
462 |
+
"""
|
463 |
+
b, c, *spatial = y[0].shape
|
464 |
+
num_spatial = int(np.prod(spatial))
|
465 |
+
# We perform two matmuls with the same number of ops.
|
466 |
+
# The first computes the weight matrix, the second computes
|
467 |
+
# the combination of the value vectors.
|
468 |
+
matmul_ops = 2 * b * (num_spatial**2) * c
|
469 |
+
model.total_ops += th.DoubleTensor([matmul_ops])
|
470 |
+
|
471 |
+
|
472 |
+
class QKVAttentionLegacy(nn.Module):
|
473 |
+
"""
|
474 |
+
A module which performs QKV attention. Matches legacy QKVAttention + input/ouput heads shaping
|
475 |
+
"""
|
476 |
+
def __init__(self, n_heads):
|
477 |
+
super().__init__()
|
478 |
+
self.n_heads = n_heads
|
479 |
+
|
480 |
+
def forward(self, qkv):
|
481 |
+
"""
|
482 |
+
Apply QKV attention.
|
483 |
+
|
484 |
+
:param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs.
|
485 |
+
:return: an [N x (H * C) x T] tensor after attention.
|
486 |
+
"""
|
487 |
+
bs, width, length = qkv.shape
|
488 |
+
assert width % (3 * self.n_heads) == 0
|
489 |
+
ch = width // (3 * self.n_heads)
|
490 |
+
q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch,
|
491 |
+
dim=1)
|
492 |
+
scale = 1 / math.sqrt(math.sqrt(ch))
|
493 |
+
weight = th.einsum(
|
494 |
+
"bct,bcs->bts", q * scale,
|
495 |
+
k * scale) # More stable with f16 than dividing afterwards
|
496 |
+
weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
|
497 |
+
a = th.einsum("bts,bcs->bct", weight, v)
|
498 |
+
return a.reshape(bs, -1, length)
|
499 |
+
|
500 |
+
@staticmethod
|
501 |
+
def count_flops(model, _x, y):
|
502 |
+
return count_flops_attn(model, _x, y)
|
503 |
+
|
504 |
+
|
505 |
+
class QKVAttention(nn.Module):
|
506 |
+
"""
|
507 |
+
A module which performs QKV attention and splits in a different order.
|
508 |
+
"""
|
509 |
+
def __init__(self, n_heads):
|
510 |
+
super().__init__()
|
511 |
+
self.n_heads = n_heads
|
512 |
+
|
513 |
+
def forward(self, qkv):
|
514 |
+
"""
|
515 |
+
Apply QKV attention.
|
516 |
+
|
517 |
+
:param qkv: an [N x (3 * H * C) x T] tensor of Qs, Ks, and Vs.
|
518 |
+
:return: an [N x (H * C) x T] tensor after attention.
|
519 |
+
"""
|
520 |
+
bs, width, length = qkv.shape
|
521 |
+
assert width % (3 * self.n_heads) == 0
|
522 |
+
ch = width // (3 * self.n_heads)
|
523 |
+
q, k, v = qkv.chunk(3, dim=1)
|
524 |
+
scale = 1 / math.sqrt(math.sqrt(ch))
|
525 |
+
weight = th.einsum(
|
526 |
+
"bct,bcs->bts",
|
527 |
+
(q * scale).view(bs * self.n_heads, ch, length),
|
528 |
+
(k * scale).view(bs * self.n_heads, ch, length),
|
529 |
+
) # More stable with f16 than dividing afterwards
|
530 |
+
weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
|
531 |
+
a = th.einsum("bts,bcs->bct", weight,
|
532 |
+
v.reshape(bs * self.n_heads, ch, length))
|
533 |
+
return a.reshape(bs, -1, length)
|
534 |
+
|
535 |
+
@staticmethod
|
536 |
+
def count_flops(model, _x, y):
|
537 |
+
return count_flops_attn(model, _x, y)
|
538 |
+
|
539 |
+
|
540 |
+
class AttentionPool2d(nn.Module):
|
541 |
+
"""
|
542 |
+
Adapted from CLIP: https://github.com/openai/CLIP/blob/main/clip/model.py
|
543 |
+
"""
|
544 |
+
def __init__(
|
545 |
+
self,
|
546 |
+
spacial_dim: int,
|
547 |
+
embed_dim: int,
|
548 |
+
num_heads_channels: int,
|
549 |
+
output_dim: int = None,
|
550 |
+
):
|
551 |
+
super().__init__()
|
552 |
+
self.positional_embedding = nn.Parameter(
|
553 |
+
th.randn(embed_dim, spacial_dim**2 + 1) / embed_dim**0.5)
|
554 |
+
self.qkv_proj = conv_nd(1, embed_dim, 3 * embed_dim, 1)
|
555 |
+
self.c_proj = conv_nd(1, embed_dim, output_dim or embed_dim, 1)
|
556 |
+
self.num_heads = embed_dim // num_heads_channels
|
557 |
+
self.attention = QKVAttention(self.num_heads)
|
558 |
+
|
559 |
+
def forward(self, x):
|
560 |
+
b, c, *_spatial = x.shape
|
561 |
+
x = x.reshape(b, c, -1) # NC(HW)
|
562 |
+
x = th.cat([x.mean(dim=-1, keepdim=True), x], dim=-1) # NC(HW+1)
|
563 |
+
x = x + self.positional_embedding[None, :, :].to(x.dtype) # NC(HW+1)
|
564 |
+
x = self.qkv_proj(x)
|
565 |
+
x = self.attention(x)
|
566 |
+
x = self.c_proj(x)
|
567 |
+
return x[:, :, 0]
|
model/diffusion.py
ADDED
@@ -0,0 +1,294 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (C) 2021. Huawei Technologies Co., Ltd. All rights reserved.
|
2 |
+
# This program is free software; you can redistribute it and/or modify
|
3 |
+
# it under the terms of the MIT License.
|
4 |
+
# This program is distributed in the hope that it will be useful,
|
5 |
+
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
6 |
+
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
7 |
+
# MIT License for more details.
|
8 |
+
|
9 |
+
import math
|
10 |
+
import torch
|
11 |
+
from einops import rearrange
|
12 |
+
|
13 |
+
from model.base import BaseModule
|
14 |
+
|
15 |
+
|
16 |
+
class Mish(BaseModule):
|
17 |
+
def forward(self, x):
|
18 |
+
return x * torch.tanh(torch.nn.functional.softplus(x))
|
19 |
+
|
20 |
+
|
21 |
+
class Upsample(BaseModule):
|
22 |
+
def __init__(self, dim):
|
23 |
+
super(Upsample, self).__init__()
|
24 |
+
self.conv = torch.nn.ConvTranspose2d(dim, dim, 4, 2, 1)
|
25 |
+
|
26 |
+
def forward(self, x):
|
27 |
+
return self.conv(x)
|
28 |
+
|
29 |
+
|
30 |
+
class Downsample(BaseModule):
|
31 |
+
def __init__(self, dim):
|
32 |
+
super(Downsample, self).__init__()
|
33 |
+
self.conv = torch.nn.Conv2d(dim, dim, 3, 2, 1)
|
34 |
+
|
35 |
+
def forward(self, x):
|
36 |
+
return self.conv(x)
|
37 |
+
|
38 |
+
|
39 |
+
class Rezero(BaseModule):
|
40 |
+
def __init__(self, fn):
|
41 |
+
super(Rezero, self).__init__()
|
42 |
+
self.fn = fn
|
43 |
+
self.g = torch.nn.Parameter(torch.zeros(1))
|
44 |
+
|
45 |
+
def forward(self, x):
|
46 |
+
return self.fn(x) * self.g
|
47 |
+
|
48 |
+
|
49 |
+
class Block(BaseModule):
|
50 |
+
def __init__(self, dim, dim_out, groups=8):
|
51 |
+
super(Block, self).__init__()
|
52 |
+
self.block = torch.nn.Sequential(torch.nn.Conv2d(dim, dim_out, 3,
|
53 |
+
padding=1), torch.nn.GroupNorm(
|
54 |
+
groups, dim_out), Mish())
|
55 |
+
|
56 |
+
def forward(self, x, mask):
|
57 |
+
output = self.block(x * mask)
|
58 |
+
return output * mask
|
59 |
+
|
60 |
+
|
61 |
+
class ResnetBlock(BaseModule):
|
62 |
+
def __init__(self, dim, dim_out, time_emb_dim, groups=8):
|
63 |
+
super(ResnetBlock, self).__init__()
|
64 |
+
self.mlp = torch.nn.Sequential(Mish(), torch.nn.Linear(time_emb_dim,
|
65 |
+
dim_out))
|
66 |
+
|
67 |
+
self.block1 = Block(dim, dim_out, groups=groups)
|
68 |
+
self.block2 = Block(dim_out, dim_out, groups=groups)
|
69 |
+
if dim != dim_out:
|
70 |
+
self.res_conv = torch.nn.Conv2d(dim, dim_out, 1)
|
71 |
+
else:
|
72 |
+
self.res_conv = torch.nn.Identity()
|
73 |
+
|
74 |
+
def forward(self, x, mask, time_emb):
|
75 |
+
h = self.block1(x, mask)
|
76 |
+
h += self.mlp(time_emb).unsqueeze(-1).unsqueeze(-1)
|
77 |
+
h = self.block2(h, mask)
|
78 |
+
output = h + self.res_conv(x * mask)
|
79 |
+
return output
|
80 |
+
|
81 |
+
|
82 |
+
class LinearAttention(BaseModule):
|
83 |
+
def __init__(self, dim, heads=4, dim_head=32):
|
84 |
+
super(LinearAttention, self).__init__()
|
85 |
+
self.heads = heads
|
86 |
+
hidden_dim = dim_head * heads
|
87 |
+
self.to_qkv = torch.nn.Conv2d(dim, hidden_dim * 3, 1, bias=False)
|
88 |
+
self.to_out = torch.nn.Conv2d(hidden_dim, dim, 1)
|
89 |
+
|
90 |
+
def forward(self, x):
|
91 |
+
b, c, h, w = x.shape
|
92 |
+
qkv = self.to_qkv(x)
|
93 |
+
q, k, v = rearrange(qkv, 'b (qkv heads c) h w -> qkv b heads c (h w)',
|
94 |
+
heads = self.heads, qkv=3)
|
95 |
+
k = k.softmax(dim=-1)
|
96 |
+
context = torch.einsum('bhdn,bhen->bhde', k, v)
|
97 |
+
out = torch.einsum('bhde,bhdn->bhen', context, q)
|
98 |
+
out = rearrange(out, 'b heads c (h w) -> b (heads c) h w',
|
99 |
+
heads=self.heads, h=h, w=w)
|
100 |
+
return self.to_out(out)
|
101 |
+
|
102 |
+
|
103 |
+
class Residual(BaseModule):
|
104 |
+
def __init__(self, fn):
|
105 |
+
super(Residual, self).__init__()
|
106 |
+
self.fn = fn
|
107 |
+
|
108 |
+
def forward(self, x, *args, **kwargs):
|
109 |
+
output = self.fn(x, *args, **kwargs) + x
|
110 |
+
return output
|
111 |
+
|
112 |
+
|
113 |
+
class SinusoidalPosEmb(BaseModule):
|
114 |
+
def __init__(self, dim):
|
115 |
+
super(SinusoidalPosEmb, self).__init__()
|
116 |
+
self.dim = dim
|
117 |
+
|
118 |
+
def forward(self, x, scale=1000):
|
119 |
+
device = x.device
|
120 |
+
half_dim = self.dim // 2
|
121 |
+
emb = math.log(10000) / (half_dim - 1)
|
122 |
+
emb = torch.exp(torch.arange(half_dim, device=device).float() * -emb)
|
123 |
+
emb = scale * x.unsqueeze(1) * emb.unsqueeze(0)
|
124 |
+
emb = torch.cat((emb.sin(), emb.cos()), dim=-1)
|
125 |
+
return emb
|
126 |
+
|
127 |
+
|
128 |
+
class GradLogPEstimator2d(BaseModule):
|
129 |
+
def __init__(self, dim, dim_mults=(1, 2, 4), groups=8,
|
130 |
+
n_spks=None, spk_emb_dim=64, n_feats=80, pe_scale=1000):
|
131 |
+
super(GradLogPEstimator2d, self).__init__()
|
132 |
+
self.dim = dim
|
133 |
+
self.dim_mults = dim_mults
|
134 |
+
self.groups = groups
|
135 |
+
self.n_spks = n_spks if not isinstance(n_spks, type(None)) else 1
|
136 |
+
self.spk_emb_dim = spk_emb_dim
|
137 |
+
self.pe_scale = pe_scale
|
138 |
+
|
139 |
+
if n_spks > 1:
|
140 |
+
self.spk_mlp = torch.nn.Sequential(torch.nn.Linear(spk_emb_dim, spk_emb_dim * 4), Mish(),
|
141 |
+
torch.nn.Linear(spk_emb_dim * 4, n_feats))
|
142 |
+
self.time_pos_emb = SinusoidalPosEmb(dim)
|
143 |
+
self.mlp = torch.nn.Sequential(torch.nn.Linear(dim, dim * 4), Mish(),
|
144 |
+
torch.nn.Linear(dim * 4, dim))
|
145 |
+
|
146 |
+
dims = [2 + (1 if n_spks > 1 else 0), *map(lambda m: dim * m, dim_mults)]
|
147 |
+
in_out = list(zip(dims[:-1], dims[1:]))
|
148 |
+
self.downs = torch.nn.ModuleList([])
|
149 |
+
self.ups = torch.nn.ModuleList([])
|
150 |
+
num_resolutions = len(in_out)
|
151 |
+
|
152 |
+
for ind, (dim_in, dim_out) in enumerate(in_out):
|
153 |
+
is_last = ind >= (num_resolutions - 1)
|
154 |
+
self.downs.append(torch.nn.ModuleList([
|
155 |
+
ResnetBlock(dim_in, dim_out, time_emb_dim=dim),
|
156 |
+
ResnetBlock(dim_out, dim_out, time_emb_dim=dim),
|
157 |
+
Residual(Rezero(LinearAttention(dim_out))),
|
158 |
+
Downsample(dim_out) if not is_last else torch.nn.Identity()]))
|
159 |
+
|
160 |
+
mid_dim = dims[-1]
|
161 |
+
self.mid_block1 = ResnetBlock(mid_dim, mid_dim, time_emb_dim=dim)
|
162 |
+
self.mid_attn = Residual(Rezero(LinearAttention(mid_dim)))
|
163 |
+
self.mid_block2 = ResnetBlock(mid_dim, mid_dim, time_emb_dim=dim)
|
164 |
+
|
165 |
+
for ind, (dim_in, dim_out) in enumerate(reversed(in_out[1:])):
|
166 |
+
self.ups.append(torch.nn.ModuleList([
|
167 |
+
ResnetBlock(dim_out * 2, dim_in, time_emb_dim=dim),
|
168 |
+
ResnetBlock(dim_in, dim_in, time_emb_dim=dim),
|
169 |
+
Residual(Rezero(LinearAttention(dim_in))),
|
170 |
+
Upsample(dim_in)]))
|
171 |
+
self.final_block = Block(dim, dim)
|
172 |
+
self.final_conv = torch.nn.Conv2d(dim, 1, 1)
|
173 |
+
|
174 |
+
def forward(self, x, mask, mu, t, spk=None):
|
175 |
+
if not isinstance(spk, type(None)):
|
176 |
+
s = self.spk_mlp(spk)
|
177 |
+
|
178 |
+
t = self.time_pos_emb(t, scale=self.pe_scale)
|
179 |
+
t = self.mlp(t)
|
180 |
+
|
181 |
+
if self.n_spks < 2:
|
182 |
+
x = torch.stack([mu, x], 1)
|
183 |
+
else:
|
184 |
+
s = s.unsqueeze(-1).repeat(1, 1, x.shape[-1])
|
185 |
+
x = torch.stack([mu, x, s], 1)
|
186 |
+
mask = mask.unsqueeze(1)
|
187 |
+
|
188 |
+
hiddens = []
|
189 |
+
masks = [mask]
|
190 |
+
for resnet1, resnet2, attn, downsample in self.downs:
|
191 |
+
mask_down = masks[-1]
|
192 |
+
x = resnet1(x, mask_down, t)
|
193 |
+
x = resnet2(x, mask_down, t)
|
194 |
+
x = attn(x)
|
195 |
+
hiddens.append(x)
|
196 |
+
x = downsample(x * mask_down)
|
197 |
+
masks.append(mask_down[:, :, :, ::2])
|
198 |
+
|
199 |
+
masks = masks[:-1]
|
200 |
+
mask_mid = masks[-1]
|
201 |
+
x = self.mid_block1(x, mask_mid, t)
|
202 |
+
x = self.mid_attn(x)
|
203 |
+
x = self.mid_block2(x, mask_mid, t)
|
204 |
+
|
205 |
+
for resnet1, resnet2, attn, upsample in self.ups:
|
206 |
+
mask_up = masks.pop()
|
207 |
+
x = torch.cat((x, hiddens.pop()), dim=1)
|
208 |
+
x = resnet1(x, mask_up, t)
|
209 |
+
x = resnet2(x, mask_up, t)
|
210 |
+
x = attn(x)
|
211 |
+
x = upsample(x * mask_up)
|
212 |
+
|
213 |
+
x = self.final_block(x, mask)
|
214 |
+
output = self.final_conv(x * mask)
|
215 |
+
|
216 |
+
return (output * mask).squeeze(1)
|
217 |
+
|
218 |
+
|
219 |
+
def get_noise(t, beta_init, beta_term, cumulative=False):
|
220 |
+
if cumulative:
|
221 |
+
noise = beta_init*t + 0.5*(beta_term - beta_init)*(t**2)
|
222 |
+
else:
|
223 |
+
noise = beta_init + (beta_term - beta_init)*t
|
224 |
+
return noise
|
225 |
+
|
226 |
+
|
227 |
+
class Diffusion(BaseModule):
|
228 |
+
def __init__(self, n_feats, dim,
|
229 |
+
n_spks=1, spk_emb_dim=64,
|
230 |
+
beta_min=0.05, beta_max=20, pe_scale=1000):
|
231 |
+
super(Diffusion, self).__init__()
|
232 |
+
self.n_feats = n_feats
|
233 |
+
self.dim = dim
|
234 |
+
self.n_spks = n_spks
|
235 |
+
self.spk_emb_dim = spk_emb_dim
|
236 |
+
self.beta_min = beta_min
|
237 |
+
self.beta_max = beta_max
|
238 |
+
self.pe_scale = pe_scale
|
239 |
+
|
240 |
+
self.estimator = GradLogPEstimator2d(dim, n_spks=n_spks,
|
241 |
+
spk_emb_dim=spk_emb_dim,
|
242 |
+
pe_scale=pe_scale)
|
243 |
+
|
244 |
+
def forward_diffusion(self, x0, mask, mu, t):
|
245 |
+
time = t.unsqueeze(-1).unsqueeze(-1)
|
246 |
+
cum_noise = get_noise(time, self.beta_min, self.beta_max, cumulative=True)
|
247 |
+
mean = x0*torch.exp(-0.5*cum_noise) + mu*(1.0 - torch.exp(-0.5*cum_noise))
|
248 |
+
variance = 1.0 - torch.exp(-cum_noise)
|
249 |
+
z = torch.randn(x0.shape, dtype=x0.dtype, device=x0.device,
|
250 |
+
requires_grad=False)
|
251 |
+
xt = mean + z * torch.sqrt(variance)
|
252 |
+
return xt * mask, z * mask
|
253 |
+
|
254 |
+
@torch.no_grad()
|
255 |
+
def reverse_diffusion(self, z, mask, mu, n_timesteps, stoc=False, spk=None):
|
256 |
+
h = 1.0 / n_timesteps
|
257 |
+
xt = z * mask
|
258 |
+
for i in range(n_timesteps):
|
259 |
+
t = (1.0 - (i + 0.5)*h) * torch.ones(z.shape[0], dtype=z.dtype,
|
260 |
+
device=z.device)
|
261 |
+
time = t.unsqueeze(-1).unsqueeze(-1)
|
262 |
+
noise_t = get_noise(time, self.beta_min, self.beta_max,
|
263 |
+
cumulative=False)
|
264 |
+
if stoc: # adds stochastic term
|
265 |
+
dxt_det = 0.5 * (mu - xt) - self.estimator(xt, mask, mu, t, spk)
|
266 |
+
dxt_det = dxt_det * noise_t * h
|
267 |
+
dxt_stoc = torch.randn(z.shape, dtype=z.dtype, device=z.device,
|
268 |
+
requires_grad=False)
|
269 |
+
dxt_stoc = dxt_stoc * torch.sqrt(noise_t * h)
|
270 |
+
dxt = dxt_det + dxt_stoc
|
271 |
+
else:
|
272 |
+
dxt = 0.5 * (mu - xt - self.estimator(xt, mask, mu, t, spk))
|
273 |
+
dxt = dxt * noise_t * h
|
274 |
+
xt = (xt - dxt) * mask
|
275 |
+
return xt
|
276 |
+
|
277 |
+
@torch.no_grad()
|
278 |
+
def forward(self, z, mask, mu, n_timesteps, stoc=False, spk=None):
|
279 |
+
return self.reverse_diffusion(z, mask, mu, n_timesteps, stoc, spk)
|
280 |
+
|
281 |
+
def loss_t(self, x0, mask, mu, t, spk=None):
|
282 |
+
xt, z = self.forward_diffusion(x0, mask, mu, t)
|
283 |
+
time = t.unsqueeze(-1).unsqueeze(-1)
|
284 |
+
cum_noise = get_noise(time, self.beta_min, self.beta_max, cumulative=True)
|
285 |
+
noise_estimation = self.estimator(xt, mask, mu, t, spk)
|
286 |
+
noise_estimation *= torch.sqrt(1.0 - torch.exp(-cum_noise))
|
287 |
+
loss = torch.sum((noise_estimation + z)**2) / (torch.sum(mask)*self.n_feats)
|
288 |
+
return loss, xt
|
289 |
+
|
290 |
+
def compute_loss(self, x0, mask, mu, spk=None, offset=1e-5):
|
291 |
+
t = torch.rand(x0.shape[0], dtype=x0.dtype, device=x0.device,
|
292 |
+
requires_grad=False)
|
293 |
+
t = torch.clamp(t, offset, 1.0 - offset)
|
294 |
+
return self.loss_t(x0, mask, mu, t, spk)
|
model/latentnet.py
ADDED
@@ -0,0 +1,193 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
from dataclasses import dataclass
|
3 |
+
from enum import Enum
|
4 |
+
from typing import NamedTuple, Tuple
|
5 |
+
|
6 |
+
import torch
|
7 |
+
from choices import *
|
8 |
+
from config_base import BaseConfig
|
9 |
+
from torch import nn
|
10 |
+
from torch.nn import init
|
11 |
+
|
12 |
+
from .blocks import *
|
13 |
+
from .nn import timestep_embedding
|
14 |
+
from .unet import *
|
15 |
+
|
16 |
+
|
17 |
+
class LatentNetType(Enum):
|
18 |
+
none = 'none'
|
19 |
+
# injecting inputs into the hidden layers
|
20 |
+
skip = 'skip'
|
21 |
+
|
22 |
+
|
23 |
+
class LatentNetReturn(NamedTuple):
|
24 |
+
pred: torch.Tensor = None
|
25 |
+
|
26 |
+
|
27 |
+
@dataclass
|
28 |
+
class MLPSkipNetConfig(BaseConfig):
|
29 |
+
"""
|
30 |
+
default MLP for the latent DPM in the paper!
|
31 |
+
"""
|
32 |
+
num_channels: int
|
33 |
+
skip_layers: Tuple[int]
|
34 |
+
num_hid_channels: int
|
35 |
+
num_layers: int
|
36 |
+
num_time_emb_channels: int = 64
|
37 |
+
activation: Activation = Activation.silu
|
38 |
+
use_norm: bool = True
|
39 |
+
condition_bias: float = 1
|
40 |
+
dropout: float = 0
|
41 |
+
last_act: Activation = Activation.none
|
42 |
+
num_time_layers: int = 2
|
43 |
+
time_last_act: bool = False
|
44 |
+
|
45 |
+
def make_model(self):
|
46 |
+
return MLPSkipNet(self)
|
47 |
+
|
48 |
+
|
49 |
+
class MLPSkipNet(nn.Module):
|
50 |
+
"""
|
51 |
+
concat x to hidden layers
|
52 |
+
|
53 |
+
default MLP for the latent DPM in the paper!
|
54 |
+
"""
|
55 |
+
def __init__(self, conf: MLPSkipNetConfig):
|
56 |
+
super().__init__()
|
57 |
+
self.conf = conf
|
58 |
+
|
59 |
+
layers = []
|
60 |
+
for i in range(conf.num_time_layers):
|
61 |
+
if i == 0:
|
62 |
+
a = conf.num_time_emb_channels
|
63 |
+
b = conf.num_channels
|
64 |
+
else:
|
65 |
+
a = conf.num_channels
|
66 |
+
b = conf.num_channels
|
67 |
+
layers.append(nn.Linear(a, b))
|
68 |
+
if i < conf.num_time_layers - 1 or conf.time_last_act:
|
69 |
+
layers.append(conf.activation.get_act())
|
70 |
+
self.time_embed = nn.Sequential(*layers)
|
71 |
+
|
72 |
+
self.layers = nn.ModuleList([])
|
73 |
+
for i in range(conf.num_layers):
|
74 |
+
if i == 0:
|
75 |
+
act = conf.activation
|
76 |
+
norm = conf.use_norm
|
77 |
+
cond = True
|
78 |
+
a, b = conf.num_channels, conf.num_hid_channels
|
79 |
+
dropout = conf.dropout
|
80 |
+
elif i == conf.num_layers - 1:
|
81 |
+
act = Activation.none
|
82 |
+
norm = False
|
83 |
+
cond = False
|
84 |
+
a, b = conf.num_hid_channels, conf.num_channels
|
85 |
+
dropout = 0
|
86 |
+
else:
|
87 |
+
act = conf.activation
|
88 |
+
norm = conf.use_norm
|
89 |
+
cond = True
|
90 |
+
a, b = conf.num_hid_channels, conf.num_hid_channels
|
91 |
+
dropout = conf.dropout
|
92 |
+
|
93 |
+
if i in conf.skip_layers:
|
94 |
+
a += conf.num_channels
|
95 |
+
|
96 |
+
self.layers.append(
|
97 |
+
MLPLNAct(
|
98 |
+
a,
|
99 |
+
b,
|
100 |
+
norm=norm,
|
101 |
+
activation=act,
|
102 |
+
cond_channels=conf.num_channels,
|
103 |
+
use_cond=cond,
|
104 |
+
condition_bias=conf.condition_bias,
|
105 |
+
dropout=dropout,
|
106 |
+
))
|
107 |
+
self.last_act = conf.last_act.get_act()
|
108 |
+
|
109 |
+
def forward(self, x, t, **kwargs):
|
110 |
+
t = timestep_embedding(t, self.conf.num_time_emb_channels)
|
111 |
+
cond = self.time_embed(t)
|
112 |
+
h = x
|
113 |
+
for i in range(len(self.layers)):
|
114 |
+
if i in self.conf.skip_layers:
|
115 |
+
# injecting input into the hidden layers
|
116 |
+
h = torch.cat([h, x], dim=1)
|
117 |
+
h = self.layers[i].forward(x=h, cond=cond)
|
118 |
+
h = self.last_act(h)
|
119 |
+
return LatentNetReturn(h)
|
120 |
+
|
121 |
+
|
122 |
+
class MLPLNAct(nn.Module):
|
123 |
+
def __init__(
|
124 |
+
self,
|
125 |
+
in_channels: int,
|
126 |
+
out_channels: int,
|
127 |
+
norm: bool,
|
128 |
+
use_cond: bool,
|
129 |
+
activation: Activation,
|
130 |
+
cond_channels: int,
|
131 |
+
condition_bias: float = 0,
|
132 |
+
dropout: float = 0,
|
133 |
+
):
|
134 |
+
super().__init__()
|
135 |
+
self.activation = activation
|
136 |
+
self.condition_bias = condition_bias
|
137 |
+
self.use_cond = use_cond
|
138 |
+
|
139 |
+
self.linear = nn.Linear(in_channels, out_channels)
|
140 |
+
self.act = activation.get_act()
|
141 |
+
if self.use_cond:
|
142 |
+
self.linear_emb = nn.Linear(cond_channels, out_channels)
|
143 |
+
self.cond_layers = nn.Sequential(self.act, self.linear_emb)
|
144 |
+
if norm:
|
145 |
+
self.norm = nn.LayerNorm(out_channels)
|
146 |
+
else:
|
147 |
+
self.norm = nn.Identity()
|
148 |
+
|
149 |
+
if dropout > 0:
|
150 |
+
self.dropout = nn.Dropout(p=dropout)
|
151 |
+
else:
|
152 |
+
self.dropout = nn.Identity()
|
153 |
+
|
154 |
+
self.init_weights()
|
155 |
+
|
156 |
+
def init_weights(self):
|
157 |
+
for module in self.modules():
|
158 |
+
if isinstance(module, nn.Linear):
|
159 |
+
if self.activation == Activation.relu:
|
160 |
+
init.kaiming_normal_(module.weight,
|
161 |
+
a=0,
|
162 |
+
nonlinearity='relu')
|
163 |
+
elif self.activation == Activation.lrelu:
|
164 |
+
init.kaiming_normal_(module.weight,
|
165 |
+
a=0.2,
|
166 |
+
nonlinearity='leaky_relu')
|
167 |
+
elif self.activation == Activation.silu:
|
168 |
+
init.kaiming_normal_(module.weight,
|
169 |
+
a=0,
|
170 |
+
nonlinearity='relu')
|
171 |
+
else:
|
172 |
+
# leave it as default
|
173 |
+
pass
|
174 |
+
|
175 |
+
def forward(self, x, cond=None):
|
176 |
+
x = self.linear(x)
|
177 |
+
if self.use_cond:
|
178 |
+
# (n, c) or (n, c * 2)
|
179 |
+
cond = self.cond_layers(cond)
|
180 |
+
cond = (cond, None)
|
181 |
+
|
182 |
+
# scale shift first
|
183 |
+
x = x * (self.condition_bias + cond[0])
|
184 |
+
if cond[1] is not None:
|
185 |
+
x = x + cond[1]
|
186 |
+
# then norm
|
187 |
+
x = self.norm(x)
|
188 |
+
else:
|
189 |
+
# no condition
|
190 |
+
x = self.norm(x)
|
191 |
+
x = self.act(x)
|
192 |
+
x = self.dropout(x)
|
193 |
+
return x
|
model/nn.py
ADDED
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Various utilities for neural networks.
|
3 |
+
"""
|
4 |
+
|
5 |
+
from enum import Enum
|
6 |
+
import math
|
7 |
+
from typing import Optional
|
8 |
+
|
9 |
+
import torch as th
|
10 |
+
import torch.nn as nn
|
11 |
+
import torch.utils.checkpoint
|
12 |
+
|
13 |
+
import torch.nn.functional as F
|
14 |
+
|
15 |
+
|
16 |
+
# PyTorch 1.7 has SiLU, but we support PyTorch 1.5.
|
17 |
+
class SiLU(nn.Module):
|
18 |
+
# @th.jit.script
|
19 |
+
def forward(self, x):
|
20 |
+
return x * th.sigmoid(x)
|
21 |
+
|
22 |
+
|
23 |
+
class GroupNorm32(nn.GroupNorm):
|
24 |
+
def forward(self, x):
|
25 |
+
return super().forward(x.float()).type(x.dtype)
|
26 |
+
|
27 |
+
|
28 |
+
def conv_nd(dims, *args, **kwargs):
|
29 |
+
"""
|
30 |
+
Create a 1D, 2D, or 3D convolution module.
|
31 |
+
"""
|
32 |
+
if dims == 1:
|
33 |
+
return nn.Conv1d(*args, **kwargs)
|
34 |
+
elif dims == 2:
|
35 |
+
return nn.Conv2d(*args, **kwargs)
|
36 |
+
elif dims == 3:
|
37 |
+
return nn.Conv3d(*args, **kwargs)
|
38 |
+
raise ValueError(f"unsupported dimensions: {dims}")
|
39 |
+
|
40 |
+
|
41 |
+
def linear(*args, **kwargs):
|
42 |
+
"""
|
43 |
+
Create a linear module.
|
44 |
+
"""
|
45 |
+
return nn.Linear(*args, **kwargs)
|
46 |
+
|
47 |
+
|
48 |
+
def avg_pool_nd(dims, *args, **kwargs):
|
49 |
+
"""
|
50 |
+
Create a 1D, 2D, or 3D average pooling module.
|
51 |
+
"""
|
52 |
+
if dims == 1:
|
53 |
+
return nn.AvgPool1d(*args, **kwargs)
|
54 |
+
elif dims == 2:
|
55 |
+
return nn.AvgPool2d(*args, **kwargs)
|
56 |
+
elif dims == 3:
|
57 |
+
return nn.AvgPool3d(*args, **kwargs)
|
58 |
+
raise ValueError(f"unsupported dimensions: {dims}")
|
59 |
+
|
60 |
+
|
61 |
+
def update_ema(target_params, source_params, rate=0.99):
|
62 |
+
"""
|
63 |
+
Update target parameters to be closer to those of source parameters using
|
64 |
+
an exponential moving average.
|
65 |
+
|
66 |
+
:param target_params: the target parameter sequence.
|
67 |
+
:param source_params: the source parameter sequence.
|
68 |
+
:param rate: the EMA rate (closer to 1 means slower).
|
69 |
+
"""
|
70 |
+
for targ, src in zip(target_params, source_params):
|
71 |
+
targ.detach().mul_(rate).add_(src, alpha=1 - rate)
|
72 |
+
|
73 |
+
|
74 |
+
def zero_module(module):
|
75 |
+
"""
|
76 |
+
Zero out the parameters of a module and return it.
|
77 |
+
"""
|
78 |
+
for p in module.parameters():
|
79 |
+
p.detach().zero_()
|
80 |
+
return module
|
81 |
+
|
82 |
+
|
83 |
+
def scale_module(module, scale):
|
84 |
+
"""
|
85 |
+
Scale the parameters of a module and return it.
|
86 |
+
"""
|
87 |
+
for p in module.parameters():
|
88 |
+
p.detach().mul_(scale)
|
89 |
+
return module
|
90 |
+
|
91 |
+
|
92 |
+
def mean_flat(tensor):
|
93 |
+
"""
|
94 |
+
Take the mean over all non-batch dimensions.
|
95 |
+
"""
|
96 |
+
return tensor.mean(dim=list(range(1, len(tensor.shape))))
|
97 |
+
|
98 |
+
|
99 |
+
def normalization(channels):
|
100 |
+
"""
|
101 |
+
Make a standard normalization layer.
|
102 |
+
|
103 |
+
:param channels: number of input channels.
|
104 |
+
:return: an nn.Module for normalization.
|
105 |
+
"""
|
106 |
+
return GroupNorm32(min(32, channels), channels)
|
107 |
+
|
108 |
+
|
109 |
+
def timestep_embedding(timesteps, dim, max_period=10000):
|
110 |
+
"""
|
111 |
+
Create sinusoidal timestep embeddings.
|
112 |
+
|
113 |
+
:param timesteps: a 1-D Tensor of N indices, one per batch element.
|
114 |
+
These may be fractional.
|
115 |
+
:param dim: the dimension of the output.
|
116 |
+
:param max_period: controls the minimum frequency of the embeddings.
|
117 |
+
:return: an [N x dim] Tensor of positional embeddings.
|
118 |
+
"""
|
119 |
+
half = dim // 2
|
120 |
+
freqs = th.exp(-math.log(max_period) *
|
121 |
+
th.arange(start=0, end=half, dtype=th.float32) /
|
122 |
+
half).to(device=timesteps.device)
|
123 |
+
args = timesteps[:, None].float() * freqs[None]
|
124 |
+
embedding = th.cat([th.cos(args), th.sin(args)], dim=-1)
|
125 |
+
if dim % 2:
|
126 |
+
embedding = th.cat(
|
127 |
+
[embedding, th.zeros_like(embedding[:, :1])], dim=-1)
|
128 |
+
return embedding
|
129 |
+
|
130 |
+
|
131 |
+
def torch_checkpoint(func, args, flag, preserve_rng_state=False):
|
132 |
+
# torch's gradient checkpoint works with automatic mixed precision, given torch >= 1.8
|
133 |
+
if flag:
|
134 |
+
return torch.utils.checkpoint.checkpoint(
|
135 |
+
func, *args, preserve_rng_state=preserve_rng_state)
|
136 |
+
else:
|
137 |
+
return func(*args)
|
model/seq2seq.py
ADDED
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn
|
3 |
+
from model.base import BaseModule
|
4 |
+
from espnet.nets.pytorch_backend.conformer.encoder import Encoder as ConformerEncoder
|
5 |
+
import torch.nn.functional as F
|
6 |
+
|
7 |
+
class LSTM(nn.Module):
|
8 |
+
def __init__(self, motion_dim, output_dim, num_layers=2, hidden_dim=128):
|
9 |
+
super().__init__()
|
10 |
+
self.lstm = nn.LSTM(input_size=motion_dim, hidden_size=hidden_dim,
|
11 |
+
num_layers=num_layers, batch_first=True)
|
12 |
+
self.fc = nn.Linear(hidden_dim, output_dim)
|
13 |
+
|
14 |
+
def forward(self, x):
|
15 |
+
x, _ = self.lstm(x)
|
16 |
+
return self.fc(x)
|
17 |
+
|
18 |
+
class DiffusionPredictor(BaseModule):
|
19 |
+
def __init__(self, conf):
|
20 |
+
super(DiffusionPredictor, self).__init__()
|
21 |
+
|
22 |
+
self.infer_type = conf.infer_type
|
23 |
+
|
24 |
+
self.initialize_layers(conf)
|
25 |
+
print(f'infer_type: {self.infer_type}')
|
26 |
+
|
27 |
+
def create_conformer_encoder(self, attention_dim, num_blocks):
|
28 |
+
return ConformerEncoder(
|
29 |
+
idim=0, attention_dim=attention_dim, attention_heads=2, linear_units=attention_dim,
|
30 |
+
num_blocks=num_blocks, input_layer=None, dropout_rate=0.2, positional_dropout_rate=0.2,
|
31 |
+
attention_dropout_rate=0.2, normalize_before=False, concat_after=False,
|
32 |
+
positionwise_layer_type="linear", positionwise_conv_kernel_size=3, macaron_style=True,
|
33 |
+
pos_enc_layer_type="rel_pos", selfattention_layer_type="rel_selfattn", use_cnn_module=True,
|
34 |
+
cnn_module_kernel=13)
|
35 |
+
|
36 |
+
def initialize_layers(self, conf, mfcc_dim=39, hubert_dim=1024, speech_layers=4, speech_dim=512, decoder_dim=1024, motion_start_dim=512, HAL_layers=25):
|
37 |
+
|
38 |
+
self.conf = conf
|
39 |
+
# Speech downsampling
|
40 |
+
if self.infer_type.startswith('mfcc'):
|
41 |
+
# from 100 hz to 25 hz
|
42 |
+
self.down_sample1 = nn.Conv1d(mfcc_dim, 256, kernel_size=3, stride=2, padding=1)
|
43 |
+
self.down_sample2 = nn.Conv1d(256, speech_dim, kernel_size=3, stride=2, padding=1)
|
44 |
+
elif self.infer_type.startswith('hubert'):
|
45 |
+
# from 50 hz to 25 hz
|
46 |
+
self.down_sample1 = nn.Conv1d(hubert_dim, speech_dim, kernel_size=3, stride=2, padding=1)
|
47 |
+
|
48 |
+
self.weights = nn.Parameter(torch.zeros(HAL_layers))
|
49 |
+
self.speech_encoder = self.create_conformer_encoder(speech_dim, speech_layers)
|
50 |
+
else:
|
51 |
+
print('infer_type not supported')
|
52 |
+
|
53 |
+
# Encoders & Deocoders
|
54 |
+
self.coarse_decoder = self.create_conformer_encoder(decoder_dim, conf.decoder_layers)
|
55 |
+
|
56 |
+
# LSTM predictors for Variance Adapter
|
57 |
+
if self.infer_type != 'hubert_audio_only':
|
58 |
+
self.pose_predictor = LSTM(speech_dim, 3)
|
59 |
+
self.pose_encoder = LSTM(3, speech_dim)
|
60 |
+
|
61 |
+
if 'full_control' in self.infer_type:
|
62 |
+
self.location_predictor = LSTM(speech_dim, 1)
|
63 |
+
self.location_encoder = LSTM(1, speech_dim)
|
64 |
+
self.face_scale_predictor = LSTM(speech_dim, 1)
|
65 |
+
self.face_scale_encoder = LSTM(1, speech_dim)
|
66 |
+
|
67 |
+
# Linear transformations
|
68 |
+
self.init_code_proj = nn.Sequential(nn.Linear(motion_start_dim, 128))
|
69 |
+
self.noisy_encoder = nn.Sequential(nn.Linear(conf.motion_dim, 128))
|
70 |
+
self.t_encoder = nn.Sequential(nn.Linear(1, 128))
|
71 |
+
self.encoder_direction_code = nn.Linear(conf.motion_dim, 128)
|
72 |
+
|
73 |
+
self.out_proj = nn.Linear(decoder_dim, conf.motion_dim)
|
74 |
+
|
75 |
+
|
76 |
+
def forward(self, initial_code, direction_code, seq_input_vector, face_location, face_scale, yaw_pitch_roll, noisy_x, t_emb, control_flag=False):
|
77 |
+
|
78 |
+
if self.infer_type.startswith('mfcc'):
|
79 |
+
x = self.mfcc_speech_downsample(seq_input_vector)
|
80 |
+
elif self.infer_type.startswith('hubert'):
|
81 |
+
norm_weights = F.softmax(self.weights, dim=-1)
|
82 |
+
weighted_feature = (norm_weights.unsqueeze(0).unsqueeze(-1).unsqueeze(-1) * seq_input_vector).sum(dim=1)
|
83 |
+
x = self.down_sample1(weighted_feature.transpose(1,2)).transpose(1,2)
|
84 |
+
x, _ = self.speech_encoder(x, masks=None)
|
85 |
+
predicted_location, predicted_scale, predicted_pose = face_location, face_scale, yaw_pitch_roll
|
86 |
+
if self.infer_type != 'hubert_audio_only':
|
87 |
+
print(f'pose controllable. control_flag: {control_flag}')
|
88 |
+
x, predicted_location, predicted_scale, predicted_pose = self.adjust_features(x, face_location, face_scale, yaw_pitch_roll, control_flag)
|
89 |
+
concatenated_features = self.combine_features(x, initial_code, direction_code, noisy_x, t_emb) # initial_code and direction_code serve as a motion guide extracted from the reference image. This aims to tell the model what the starting motion should be.
|
90 |
+
outputs = self.decode_features(concatenated_features)
|
91 |
+
return outputs, predicted_location, predicted_scale, predicted_pose
|
92 |
+
|
93 |
+
def mfcc_speech_downsample(self, seq_input_vector):
|
94 |
+
x = self.down_sample1(seq_input_vector.transpose(1,2))
|
95 |
+
return self.down_sample2(x).transpose(1,2)
|
96 |
+
|
97 |
+
def adjust_features(self, x, face_location, face_scale, yaw_pitch_roll, control_flag):
|
98 |
+
predicted_location, predicted_scale = 0, 0
|
99 |
+
if 'full_control' in self.infer_type:
|
100 |
+
print(f'full controllable. control_flag: {control_flag}')
|
101 |
+
x_residual, predicted_location = self.adjust_location(x, face_location, control_flag)
|
102 |
+
x = x + x_residual
|
103 |
+
|
104 |
+
x_residual, predicted_scale = self.adjust_scale(x, face_scale, control_flag)
|
105 |
+
x = x + x_residual
|
106 |
+
|
107 |
+
x_residual, predicted_pose= self.adjust_pose(x, yaw_pitch_roll, control_flag)
|
108 |
+
x = x + x_residual
|
109 |
+
return x, predicted_location, predicted_scale, predicted_pose
|
110 |
+
|
111 |
+
def adjust_location(self, x, face_location, control_flag):
|
112 |
+
if control_flag:
|
113 |
+
predicted_location = face_location
|
114 |
+
else:
|
115 |
+
predicted_location = self.location_predictor(x)
|
116 |
+
return self.location_encoder(predicted_location), predicted_location
|
117 |
+
|
118 |
+
def adjust_scale(self, x, face_scale, control_flag):
|
119 |
+
if control_flag:
|
120 |
+
predicted_face_scale = face_scale
|
121 |
+
else:
|
122 |
+
predicted_face_scale = self.face_scale_predictor(x)
|
123 |
+
return self.face_scale_encoder(predicted_face_scale), predicted_face_scale
|
124 |
+
|
125 |
+
def adjust_pose(self, x, yaw_pitch_roll, control_flag):
|
126 |
+
if control_flag:
|
127 |
+
predicted_pose = yaw_pitch_roll
|
128 |
+
else:
|
129 |
+
predicted_pose = self.pose_predictor(x)
|
130 |
+
return self.pose_encoder(predicted_pose), predicted_pose
|
131 |
+
|
132 |
+
def combine_features(self, x, initial_code, direction_code, noisy_x, t_emb):
|
133 |
+
init_code_proj = self.init_code_proj(initial_code).unsqueeze(1).repeat(1, x.size(1), 1)
|
134 |
+
noisy_feature = self.noisy_encoder(noisy_x)
|
135 |
+
t_emb_feature = self.t_encoder(t_emb.unsqueeze(1).float()).unsqueeze(1).repeat(1, x.size(1), 1)
|
136 |
+
direction_code_feature = self.encoder_direction_code(direction_code).unsqueeze(1).repeat(1, x.size(1), 1)
|
137 |
+
return torch.cat((x, direction_code_feature, init_code_proj, noisy_feature, t_emb_feature), dim=-1)
|
138 |
+
|
139 |
+
def decode_features(self, concatenated_features):
|
140 |
+
outputs, _ = self.coarse_decoder(concatenated_features, masks=None)
|
141 |
+
return self.out_proj(outputs)
|
model/unet.py
ADDED
@@ -0,0 +1,552 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
from dataclasses import dataclass
|
3 |
+
from numbers import Number
|
4 |
+
from typing import NamedTuple, Tuple, Union
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
import torch as th
|
8 |
+
from torch import nn
|
9 |
+
import torch.nn.functional as F
|
10 |
+
from choices import *
|
11 |
+
from config_base import BaseConfig
|
12 |
+
from .blocks import *
|
13 |
+
|
14 |
+
from .nn import (conv_nd, linear, normalization, timestep_embedding,
|
15 |
+
torch_checkpoint, zero_module)
|
16 |
+
|
17 |
+
|
18 |
+
@dataclass
|
19 |
+
class BeatGANsUNetConfig(BaseConfig):
|
20 |
+
image_size: int = 64
|
21 |
+
in_channels: int = 3
|
22 |
+
# base channels, will be multiplied
|
23 |
+
model_channels: int = 64
|
24 |
+
# output of the unet
|
25 |
+
# suggest: 3
|
26 |
+
# you only need 6 if you also model the variance of the noise prediction (usually we use an analytical variance hence 3)
|
27 |
+
out_channels: int = 3
|
28 |
+
# how many repeating resblocks per resolution
|
29 |
+
# the decoding side would have "one more" resblock
|
30 |
+
# default: 2
|
31 |
+
num_res_blocks: int = 2
|
32 |
+
# you can also set the number of resblocks specifically for the input blocks
|
33 |
+
# default: None = above
|
34 |
+
num_input_res_blocks: int = None
|
35 |
+
# number of time embed channels and style channels
|
36 |
+
embed_channels: int = 512
|
37 |
+
# at what resolutions you want to do self-attention of the feature maps
|
38 |
+
# attentions generally improve performance
|
39 |
+
# default: [16]
|
40 |
+
# beatgans: [32, 16, 8]
|
41 |
+
attention_resolutions: Tuple[int] = (16, )
|
42 |
+
# number of time embed channels
|
43 |
+
time_embed_channels: int = None
|
44 |
+
# dropout applies to the resblocks (on feature maps)
|
45 |
+
dropout: float = 0.1
|
46 |
+
channel_mult: Tuple[int] = (1, 2, 4, 8)
|
47 |
+
input_channel_mult: Tuple[int] = None
|
48 |
+
conv_resample: bool = True
|
49 |
+
# always 2 = 2d conv
|
50 |
+
dims: int = 2
|
51 |
+
# don't use this, legacy from BeatGANs
|
52 |
+
num_classes: int = None
|
53 |
+
use_checkpoint: bool = False
|
54 |
+
# number of attention heads
|
55 |
+
num_heads: int = 1
|
56 |
+
# or specify the number of channels per attention head
|
57 |
+
num_head_channels: int = -1
|
58 |
+
# what's this?
|
59 |
+
num_heads_upsample: int = -1
|
60 |
+
# use resblock for upscale/downscale blocks (expensive)
|
61 |
+
# default: True (BeatGANs)
|
62 |
+
resblock_updown: bool = True
|
63 |
+
# never tried
|
64 |
+
use_new_attention_order: bool = False
|
65 |
+
resnet_two_cond: bool = False
|
66 |
+
resnet_cond_channels: int = None
|
67 |
+
# init the decoding conv layers with zero weights, this speeds up training
|
68 |
+
# default: True (BeattGANs)
|
69 |
+
resnet_use_zero_module: bool = True
|
70 |
+
# gradient checkpoint the attention operation
|
71 |
+
attn_checkpoint: bool = False
|
72 |
+
|
73 |
+
def make_model(self):
|
74 |
+
return BeatGANsUNetModel(self)
|
75 |
+
|
76 |
+
|
77 |
+
class BeatGANsUNetModel(nn.Module):
|
78 |
+
def __init__(self, conf: BeatGANsUNetConfig):
|
79 |
+
super().__init__()
|
80 |
+
self.conf = conf
|
81 |
+
|
82 |
+
if conf.num_heads_upsample == -1:
|
83 |
+
self.num_heads_upsample = conf.num_heads
|
84 |
+
|
85 |
+
self.dtype = th.float32
|
86 |
+
|
87 |
+
self.time_emb_channels = conf.time_embed_channels or conf.model_channels
|
88 |
+
self.time_embed = nn.Sequential(
|
89 |
+
linear(self.time_emb_channels, conf.embed_channels),
|
90 |
+
nn.SiLU(),
|
91 |
+
linear(conf.embed_channels, conf.embed_channels),
|
92 |
+
)
|
93 |
+
|
94 |
+
if conf.num_classes is not None:
|
95 |
+
self.label_emb = nn.Embedding(conf.num_classes,
|
96 |
+
conf.embed_channels)
|
97 |
+
|
98 |
+
ch = input_ch = int(conf.channel_mult[0] * conf.model_channels)
|
99 |
+
self.input_blocks = nn.ModuleList([
|
100 |
+
TimestepEmbedSequential(
|
101 |
+
conv_nd(conf.dims, conf.in_channels, ch, 3, padding=1))
|
102 |
+
])
|
103 |
+
|
104 |
+
kwargs = dict(
|
105 |
+
use_condition=True,
|
106 |
+
two_cond=conf.resnet_two_cond,
|
107 |
+
use_zero_module=conf.resnet_use_zero_module,
|
108 |
+
# style channels for the resnet block
|
109 |
+
cond_emb_channels=conf.resnet_cond_channels,
|
110 |
+
)
|
111 |
+
|
112 |
+
self._feature_size = ch
|
113 |
+
|
114 |
+
# input_block_chans = [ch]
|
115 |
+
input_block_chans = [[] for _ in range(len(conf.channel_mult))]
|
116 |
+
input_block_chans[0].append(ch)
|
117 |
+
|
118 |
+
# number of blocks at each resolution
|
119 |
+
self.input_num_blocks = [0 for _ in range(len(conf.channel_mult))]
|
120 |
+
self.input_num_blocks[0] = 1
|
121 |
+
self.output_num_blocks = [0 for _ in range(len(conf.channel_mult))]
|
122 |
+
|
123 |
+
ds = 1
|
124 |
+
resolution = conf.image_size
|
125 |
+
for level, mult in enumerate(conf.input_channel_mult
|
126 |
+
or conf.channel_mult):
|
127 |
+
for _ in range(conf.num_input_res_blocks or conf.num_res_blocks):
|
128 |
+
layers = [
|
129 |
+
ResBlockConfig(
|
130 |
+
ch,
|
131 |
+
conf.embed_channels,
|
132 |
+
conf.dropout,
|
133 |
+
out_channels=int(mult * conf.model_channels),
|
134 |
+
dims=conf.dims,
|
135 |
+
use_checkpoint=conf.use_checkpoint,
|
136 |
+
**kwargs,
|
137 |
+
).make_model()
|
138 |
+
]
|
139 |
+
ch = int(mult * conf.model_channels)
|
140 |
+
if resolution in conf.attention_resolutions:
|
141 |
+
layers.append(
|
142 |
+
AttentionBlock(
|
143 |
+
ch,
|
144 |
+
use_checkpoint=conf.use_checkpoint
|
145 |
+
or conf.attn_checkpoint,
|
146 |
+
num_heads=conf.num_heads,
|
147 |
+
num_head_channels=conf.num_head_channels,
|
148 |
+
use_new_attention_order=conf.
|
149 |
+
use_new_attention_order,
|
150 |
+
))
|
151 |
+
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
152 |
+
self._feature_size += ch
|
153 |
+
# input_block_chans.append(ch)
|
154 |
+
input_block_chans[level].append(ch)
|
155 |
+
self.input_num_blocks[level] += 1
|
156 |
+
# print(input_block_chans)
|
157 |
+
if level != len(conf.channel_mult) - 1:
|
158 |
+
resolution //= 2
|
159 |
+
out_ch = ch
|
160 |
+
self.input_blocks.append(
|
161 |
+
TimestepEmbedSequential(
|
162 |
+
ResBlockConfig(
|
163 |
+
ch,
|
164 |
+
conf.embed_channels,
|
165 |
+
conf.dropout,
|
166 |
+
out_channels=out_ch,
|
167 |
+
dims=conf.dims,
|
168 |
+
use_checkpoint=conf.use_checkpoint,
|
169 |
+
down=True,
|
170 |
+
**kwargs,
|
171 |
+
).make_model() if conf.
|
172 |
+
resblock_updown else Downsample(ch,
|
173 |
+
conf.conv_resample,
|
174 |
+
dims=conf.dims,
|
175 |
+
out_channels=out_ch)))
|
176 |
+
ch = out_ch
|
177 |
+
# input_block_chans.append(ch)
|
178 |
+
input_block_chans[level + 1].append(ch)
|
179 |
+
self.input_num_blocks[level + 1] += 1
|
180 |
+
ds *= 2
|
181 |
+
self._feature_size += ch
|
182 |
+
|
183 |
+
self.middle_block = TimestepEmbedSequential(
|
184 |
+
ResBlockConfig(
|
185 |
+
ch,
|
186 |
+
conf.embed_channels,
|
187 |
+
conf.dropout,
|
188 |
+
dims=conf.dims,
|
189 |
+
use_checkpoint=conf.use_checkpoint,
|
190 |
+
**kwargs,
|
191 |
+
).make_model(),
|
192 |
+
AttentionBlock(
|
193 |
+
ch,
|
194 |
+
use_checkpoint=conf.use_checkpoint or conf.attn_checkpoint,
|
195 |
+
num_heads=conf.num_heads,
|
196 |
+
num_head_channels=conf.num_head_channels,
|
197 |
+
use_new_attention_order=conf.use_new_attention_order,
|
198 |
+
),
|
199 |
+
ResBlockConfig(
|
200 |
+
ch,
|
201 |
+
conf.embed_channels,
|
202 |
+
conf.dropout,
|
203 |
+
dims=conf.dims,
|
204 |
+
use_checkpoint=conf.use_checkpoint,
|
205 |
+
**kwargs,
|
206 |
+
).make_model(),
|
207 |
+
)
|
208 |
+
self._feature_size += ch
|
209 |
+
|
210 |
+
self.output_blocks = nn.ModuleList([])
|
211 |
+
for level, mult in list(enumerate(conf.channel_mult))[::-1]:
|
212 |
+
for i in range(conf.num_res_blocks + 1):
|
213 |
+
# print(input_block_chans)
|
214 |
+
# ich = input_block_chans.pop()
|
215 |
+
try:
|
216 |
+
ich = input_block_chans[level].pop()
|
217 |
+
except IndexError:
|
218 |
+
# this happens only when num_res_block > num_enc_res_block
|
219 |
+
# we will not have enough lateral (skip) connecions for all decoder blocks
|
220 |
+
ich = 0
|
221 |
+
# print('pop:', ich)
|
222 |
+
layers = [
|
223 |
+
ResBlockConfig(
|
224 |
+
# only direct channels when gated
|
225 |
+
channels=ch + ich,
|
226 |
+
emb_channels=conf.embed_channels,
|
227 |
+
dropout=conf.dropout,
|
228 |
+
out_channels=int(conf.model_channels * mult),
|
229 |
+
dims=conf.dims,
|
230 |
+
use_checkpoint=conf.use_checkpoint,
|
231 |
+
# lateral channels are described here when gated
|
232 |
+
has_lateral=True if ich > 0 else False,
|
233 |
+
lateral_channels=None,
|
234 |
+
**kwargs,
|
235 |
+
).make_model()
|
236 |
+
]
|
237 |
+
ch = int(conf.model_channels * mult)
|
238 |
+
if resolution in conf.attention_resolutions:
|
239 |
+
layers.append(
|
240 |
+
AttentionBlock(
|
241 |
+
ch,
|
242 |
+
use_checkpoint=conf.use_checkpoint
|
243 |
+
or conf.attn_checkpoint,
|
244 |
+
num_heads=self.num_heads_upsample,
|
245 |
+
num_head_channels=conf.num_head_channels,
|
246 |
+
use_new_attention_order=conf.
|
247 |
+
use_new_attention_order,
|
248 |
+
))
|
249 |
+
if level and i == conf.num_res_blocks:
|
250 |
+
resolution *= 2
|
251 |
+
out_ch = ch
|
252 |
+
layers.append(
|
253 |
+
ResBlockConfig(
|
254 |
+
ch,
|
255 |
+
conf.embed_channels,
|
256 |
+
conf.dropout,
|
257 |
+
out_channels=out_ch,
|
258 |
+
dims=conf.dims,
|
259 |
+
use_checkpoint=conf.use_checkpoint,
|
260 |
+
up=True,
|
261 |
+
**kwargs,
|
262 |
+
).make_model() if (
|
263 |
+
conf.resblock_updown
|
264 |
+
) else Upsample(ch,
|
265 |
+
conf.conv_resample,
|
266 |
+
dims=conf.dims,
|
267 |
+
out_channels=out_ch))
|
268 |
+
ds //= 2
|
269 |
+
self.output_blocks.append(TimestepEmbedSequential(*layers))
|
270 |
+
self.output_num_blocks[level] += 1
|
271 |
+
self._feature_size += ch
|
272 |
+
|
273 |
+
# print(input_block_chans)
|
274 |
+
# print('inputs:', self.input_num_blocks)
|
275 |
+
# print('outputs:', self.output_num_blocks)
|
276 |
+
|
277 |
+
if conf.resnet_use_zero_module:
|
278 |
+
self.out = nn.Sequential(
|
279 |
+
normalization(ch),
|
280 |
+
nn.SiLU(),
|
281 |
+
zero_module(
|
282 |
+
conv_nd(conf.dims,
|
283 |
+
input_ch,
|
284 |
+
conf.out_channels,
|
285 |
+
3,
|
286 |
+
padding=1)),
|
287 |
+
)
|
288 |
+
else:
|
289 |
+
self.out = nn.Sequential(
|
290 |
+
normalization(ch),
|
291 |
+
nn.SiLU(),
|
292 |
+
conv_nd(conf.dims, input_ch, conf.out_channels, 3, padding=1),
|
293 |
+
)
|
294 |
+
|
295 |
+
def forward(self, x, t, y=None, **kwargs):
|
296 |
+
"""
|
297 |
+
Apply the model to an input batch.
|
298 |
+
|
299 |
+
:param x: an [N x C x ...] Tensor of inputs.
|
300 |
+
:param timesteps: a 1-D batch of timesteps.
|
301 |
+
:param y: an [N] Tensor of labels, if class-conditional.
|
302 |
+
:return: an [N x C x ...] Tensor of outputs.
|
303 |
+
"""
|
304 |
+
assert (y is not None) == (
|
305 |
+
self.conf.num_classes is not None
|
306 |
+
), "must specify y if and only if the model is class-conditional"
|
307 |
+
|
308 |
+
# hs = []
|
309 |
+
hs = [[] for _ in range(len(self.conf.channel_mult))]
|
310 |
+
emb = self.time_embed(timestep_embedding(t, self.time_emb_channels))
|
311 |
+
|
312 |
+
if self.conf.num_classes is not None:
|
313 |
+
raise NotImplementedError()
|
314 |
+
# assert y.shape == (x.shape[0], )
|
315 |
+
# emb = emb + self.label_emb(y)
|
316 |
+
|
317 |
+
# new code supports input_num_blocks != output_num_blocks
|
318 |
+
h = x.type(self.dtype)
|
319 |
+
k = 0
|
320 |
+
for i in range(len(self.input_num_blocks)):
|
321 |
+
for j in range(self.input_num_blocks[i]):
|
322 |
+
h = self.input_blocks[k](h, emb=emb)
|
323 |
+
# print(i, j, h.shape)
|
324 |
+
hs[i].append(h)
|
325 |
+
k += 1
|
326 |
+
assert k == len(self.input_blocks)
|
327 |
+
|
328 |
+
h = self.middle_block(h, emb=emb)
|
329 |
+
k = 0
|
330 |
+
for i in range(len(self.output_num_blocks)):
|
331 |
+
for j in range(self.output_num_blocks[i]):
|
332 |
+
# take the lateral connection from the same layer (in reserve)
|
333 |
+
# until there is no more, use None
|
334 |
+
try:
|
335 |
+
lateral = hs[-i - 1].pop()
|
336 |
+
# print(i, j, lateral.shape)
|
337 |
+
except IndexError:
|
338 |
+
lateral = None
|
339 |
+
# print(i, j, lateral)
|
340 |
+
h = self.output_blocks[k](h, emb=emb, lateral=lateral)
|
341 |
+
k += 1
|
342 |
+
|
343 |
+
h = h.type(x.dtype)
|
344 |
+
pred = self.out(h)
|
345 |
+
return Return(pred=pred)
|
346 |
+
|
347 |
+
|
348 |
+
class Return(NamedTuple):
|
349 |
+
pred: th.Tensor
|
350 |
+
|
351 |
+
|
352 |
+
@dataclass
|
353 |
+
class BeatGANsEncoderConfig(BaseConfig):
|
354 |
+
image_size: int
|
355 |
+
in_channels: int
|
356 |
+
model_channels: int
|
357 |
+
out_hid_channels: int
|
358 |
+
out_channels: int
|
359 |
+
num_res_blocks: int
|
360 |
+
attention_resolutions: Tuple[int]
|
361 |
+
dropout: float = 0
|
362 |
+
channel_mult: Tuple[int] = (1, 2, 4, 8)
|
363 |
+
use_time_condition: bool = True
|
364 |
+
conv_resample: bool = True
|
365 |
+
dims: int = 2
|
366 |
+
use_checkpoint: bool = False
|
367 |
+
num_heads: int = 1
|
368 |
+
num_head_channels: int = -1
|
369 |
+
resblock_updown: bool = False
|
370 |
+
use_new_attention_order: bool = False
|
371 |
+
pool: str = 'adaptivenonzero'
|
372 |
+
|
373 |
+
def make_model(self):
|
374 |
+
return BeatGANsEncoderModel(self)
|
375 |
+
|
376 |
+
|
377 |
+
class BeatGANsEncoderModel(nn.Module):
|
378 |
+
"""
|
379 |
+
The half UNet model with attention and timestep embedding.
|
380 |
+
|
381 |
+
For usage, see UNet.
|
382 |
+
"""
|
383 |
+
def __init__(self, conf: BeatGANsEncoderConfig):
|
384 |
+
super().__init__()
|
385 |
+
self.conf = conf
|
386 |
+
self.dtype = th.float32
|
387 |
+
|
388 |
+
if conf.use_time_condition:
|
389 |
+
time_embed_dim = conf.model_channels * 4
|
390 |
+
self.time_embed = nn.Sequential(
|
391 |
+
linear(conf.model_channels, time_embed_dim),
|
392 |
+
nn.SiLU(),
|
393 |
+
linear(time_embed_dim, time_embed_dim),
|
394 |
+
)
|
395 |
+
else:
|
396 |
+
time_embed_dim = None
|
397 |
+
|
398 |
+
ch = int(conf.channel_mult[0] * conf.model_channels)
|
399 |
+
self.input_blocks = nn.ModuleList([
|
400 |
+
TimestepEmbedSequential(
|
401 |
+
conv_nd(conf.dims, conf.in_channels, ch, 3, padding=1))
|
402 |
+
])
|
403 |
+
self._feature_size = ch
|
404 |
+
input_block_chans = [ch]
|
405 |
+
ds = 1
|
406 |
+
resolution = conf.image_size
|
407 |
+
for level, mult in enumerate(conf.channel_mult):
|
408 |
+
for _ in range(conf.num_res_blocks):
|
409 |
+
layers = [
|
410 |
+
ResBlockConfig(
|
411 |
+
ch,
|
412 |
+
time_embed_dim,
|
413 |
+
conf.dropout,
|
414 |
+
out_channels=int(mult * conf.model_channels),
|
415 |
+
dims=conf.dims,
|
416 |
+
use_condition=conf.use_time_condition,
|
417 |
+
use_checkpoint=conf.use_checkpoint,
|
418 |
+
).make_model()
|
419 |
+
]
|
420 |
+
ch = int(mult * conf.model_channels)
|
421 |
+
if resolution in conf.attention_resolutions:
|
422 |
+
layers.append(
|
423 |
+
AttentionBlock(
|
424 |
+
ch,
|
425 |
+
use_checkpoint=conf.use_checkpoint,
|
426 |
+
num_heads=conf.num_heads,
|
427 |
+
num_head_channels=conf.num_head_channels,
|
428 |
+
use_new_attention_order=conf.
|
429 |
+
use_new_attention_order,
|
430 |
+
))
|
431 |
+
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
432 |
+
self._feature_size += ch
|
433 |
+
input_block_chans.append(ch)
|
434 |
+
if level != len(conf.channel_mult) - 1:
|
435 |
+
resolution //= 2
|
436 |
+
out_ch = ch
|
437 |
+
self.input_blocks.append(
|
438 |
+
TimestepEmbedSequential(
|
439 |
+
ResBlockConfig(
|
440 |
+
ch,
|
441 |
+
time_embed_dim,
|
442 |
+
conf.dropout,
|
443 |
+
out_channels=out_ch,
|
444 |
+
dims=conf.dims,
|
445 |
+
use_condition=conf.use_time_condition,
|
446 |
+
use_checkpoint=conf.use_checkpoint,
|
447 |
+
down=True,
|
448 |
+
).make_model() if (
|
449 |
+
conf.resblock_updown
|
450 |
+
) else Downsample(ch,
|
451 |
+
conf.conv_resample,
|
452 |
+
dims=conf.dims,
|
453 |
+
out_channels=out_ch)))
|
454 |
+
ch = out_ch
|
455 |
+
input_block_chans.append(ch)
|
456 |
+
ds *= 2
|
457 |
+
self._feature_size += ch
|
458 |
+
|
459 |
+
self.middle_block = TimestepEmbedSequential(
|
460 |
+
ResBlockConfig(
|
461 |
+
ch,
|
462 |
+
time_embed_dim,
|
463 |
+
conf.dropout,
|
464 |
+
dims=conf.dims,
|
465 |
+
use_condition=conf.use_time_condition,
|
466 |
+
use_checkpoint=conf.use_checkpoint,
|
467 |
+
).make_model(),
|
468 |
+
AttentionBlock(
|
469 |
+
ch,
|
470 |
+
use_checkpoint=conf.use_checkpoint,
|
471 |
+
num_heads=conf.num_heads,
|
472 |
+
num_head_channels=conf.num_head_channels,
|
473 |
+
use_new_attention_order=conf.use_new_attention_order,
|
474 |
+
),
|
475 |
+
ResBlockConfig(
|
476 |
+
ch,
|
477 |
+
time_embed_dim,
|
478 |
+
conf.dropout,
|
479 |
+
dims=conf.dims,
|
480 |
+
use_condition=conf.use_time_condition,
|
481 |
+
use_checkpoint=conf.use_checkpoint,
|
482 |
+
).make_model(),
|
483 |
+
)
|
484 |
+
self._feature_size += ch
|
485 |
+
if conf.pool == "adaptivenonzero":
|
486 |
+
self.out = nn.Sequential(
|
487 |
+
normalization(ch),
|
488 |
+
nn.SiLU(),
|
489 |
+
nn.AdaptiveAvgPool2d((1, 1)),
|
490 |
+
conv_nd(conf.dims, ch, conf.out_channels, 1),
|
491 |
+
nn.Flatten(),
|
492 |
+
)
|
493 |
+
else:
|
494 |
+
raise NotImplementedError(f"Unexpected {conf.pool} pooling")
|
495 |
+
|
496 |
+
def forward(self, x, t=None, return_2d_feature=False):
|
497 |
+
"""
|
498 |
+
Apply the model to an input batch.
|
499 |
+
|
500 |
+
:param x: an [N x C x ...] Tensor of inputs.
|
501 |
+
:param timesteps: a 1-D batch of timesteps.
|
502 |
+
:return: an [N x K] Tensor of outputs.
|
503 |
+
"""
|
504 |
+
if self.conf.use_time_condition:
|
505 |
+
emb = self.time_embed(timestep_embedding(t, self.model_channels))
|
506 |
+
else:
|
507 |
+
emb = None
|
508 |
+
|
509 |
+
results = []
|
510 |
+
h = x.type(self.dtype)
|
511 |
+
for module in self.input_blocks:
|
512 |
+
h = module(h, emb=emb)
|
513 |
+
if self.conf.pool.startswith("spatial"):
|
514 |
+
results.append(h.type(x.dtype).mean(dim=(2, 3)))
|
515 |
+
h = self.middle_block(h, emb=emb)
|
516 |
+
if self.conf.pool.startswith("spatial"):
|
517 |
+
results.append(h.type(x.dtype).mean(dim=(2, 3)))
|
518 |
+
h = th.cat(results, axis=-1)
|
519 |
+
else:
|
520 |
+
h = h.type(x.dtype)
|
521 |
+
|
522 |
+
h_2d = h
|
523 |
+
h = self.out(h)
|
524 |
+
|
525 |
+
if return_2d_feature:
|
526 |
+
return h, h_2d
|
527 |
+
else:
|
528 |
+
return h
|
529 |
+
|
530 |
+
def forward_flatten(self, x):
|
531 |
+
"""
|
532 |
+
transform the last 2d feature into a flatten vector
|
533 |
+
"""
|
534 |
+
h = self.out(x)
|
535 |
+
return h
|
536 |
+
|
537 |
+
|
538 |
+
class SuperResModel(BeatGANsUNetModel):
|
539 |
+
"""
|
540 |
+
A UNetModel that performs super-resolution.
|
541 |
+
|
542 |
+
Expects an extra kwarg `low_res` to condition on a low-resolution image.
|
543 |
+
"""
|
544 |
+
def __init__(self, image_size, in_channels, *args, **kwargs):
|
545 |
+
super().__init__(image_size, in_channels * 2, *args, **kwargs)
|
546 |
+
|
547 |
+
def forward(self, x, timesteps, low_res=None, **kwargs):
|
548 |
+
_, _, new_height, new_width = x.shape
|
549 |
+
upsampled = F.interpolate(low_res, (new_height, new_width),
|
550 |
+
mode="bilinear")
|
551 |
+
x = th.cat([x, upsampled], dim=1)
|
552 |
+
return super().forward(x, timesteps, **kwargs)
|
model/unet_autoenc.py
ADDED
@@ -0,0 +1,283 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from enum import Enum
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from torch import Tensor
|
5 |
+
from torch.nn.functional import silu
|
6 |
+
|
7 |
+
from .latentnet import *
|
8 |
+
from .unet import *
|
9 |
+
from choices import *
|
10 |
+
|
11 |
+
|
12 |
+
@dataclass
|
13 |
+
class BeatGANsAutoencConfig(BeatGANsUNetConfig):
|
14 |
+
# number of style channels
|
15 |
+
enc_out_channels: int = 512
|
16 |
+
enc_attn_resolutions: Tuple[int] = None
|
17 |
+
enc_pool: str = 'depthconv'
|
18 |
+
enc_num_res_block: int = 2
|
19 |
+
enc_channel_mult: Tuple[int] = None
|
20 |
+
enc_grad_checkpoint: bool = False
|
21 |
+
latent_net_conf: MLPSkipNetConfig = None
|
22 |
+
|
23 |
+
def make_model(self):
|
24 |
+
return BeatGANsAutoencModel(self)
|
25 |
+
|
26 |
+
|
27 |
+
class BeatGANsAutoencModel(BeatGANsUNetModel):
|
28 |
+
def __init__(self, conf: BeatGANsAutoencConfig):
|
29 |
+
super().__init__(conf)
|
30 |
+
self.conf = conf
|
31 |
+
|
32 |
+
# having only time, cond
|
33 |
+
self.time_embed = TimeStyleSeperateEmbed(
|
34 |
+
time_channels=conf.model_channels,
|
35 |
+
time_out_channels=conf.embed_channels,
|
36 |
+
)
|
37 |
+
|
38 |
+
self.encoder = BeatGANsEncoderConfig(
|
39 |
+
image_size=conf.image_size,
|
40 |
+
in_channels=conf.in_channels,
|
41 |
+
model_channels=conf.model_channels,
|
42 |
+
out_hid_channels=conf.enc_out_channels,
|
43 |
+
out_channels=conf.enc_out_channels,
|
44 |
+
num_res_blocks=conf.enc_num_res_block,
|
45 |
+
attention_resolutions=(conf.enc_attn_resolutions
|
46 |
+
or conf.attention_resolutions),
|
47 |
+
dropout=conf.dropout,
|
48 |
+
channel_mult=conf.enc_channel_mult or conf.channel_mult,
|
49 |
+
use_time_condition=False,
|
50 |
+
conv_resample=conf.conv_resample,
|
51 |
+
dims=conf.dims,
|
52 |
+
use_checkpoint=conf.use_checkpoint or conf.enc_grad_checkpoint,
|
53 |
+
num_heads=conf.num_heads,
|
54 |
+
num_head_channels=conf.num_head_channels,
|
55 |
+
resblock_updown=conf.resblock_updown,
|
56 |
+
use_new_attention_order=conf.use_new_attention_order,
|
57 |
+
pool=conf.enc_pool,
|
58 |
+
).make_model()
|
59 |
+
|
60 |
+
if conf.latent_net_conf is not None:
|
61 |
+
self.latent_net = conf.latent_net_conf.make_model()
|
62 |
+
|
63 |
+
def reparameterize(self, mu: Tensor, logvar: Tensor) -> Tensor:
|
64 |
+
"""
|
65 |
+
Reparameterization trick to sample from N(mu, var) from
|
66 |
+
N(0,1).
|
67 |
+
:param mu: (Tensor) Mean of the latent Gaussian [B x D]
|
68 |
+
:param logvar: (Tensor) Standard deviation of the latent Gaussian [B x D]
|
69 |
+
:return: (Tensor) [B x D]
|
70 |
+
"""
|
71 |
+
assert self.conf.is_stochastic
|
72 |
+
std = torch.exp(0.5 * logvar)
|
73 |
+
eps = torch.randn_like(std)
|
74 |
+
return eps * std + mu
|
75 |
+
|
76 |
+
def sample_z(self, n: int, device):
|
77 |
+
assert self.conf.is_stochastic
|
78 |
+
return torch.randn(n, self.conf.enc_out_channels, device=device)
|
79 |
+
|
80 |
+
def noise_to_cond(self, noise: Tensor):
|
81 |
+
raise NotImplementedError()
|
82 |
+
assert self.conf.noise_net_conf is not None
|
83 |
+
return self.noise_net.forward(noise)
|
84 |
+
|
85 |
+
def encode(self, x):
|
86 |
+
cond = self.encoder.forward(x)
|
87 |
+
return {'cond': cond}
|
88 |
+
|
89 |
+
@property
|
90 |
+
def stylespace_sizes(self):
|
91 |
+
modules = list(self.input_blocks.modules()) + list(
|
92 |
+
self.middle_block.modules()) + list(self.output_blocks.modules())
|
93 |
+
sizes = []
|
94 |
+
for module in modules:
|
95 |
+
if isinstance(module, ResBlock):
|
96 |
+
linear = module.cond_emb_layers[-1]
|
97 |
+
sizes.append(linear.weight.shape[0])
|
98 |
+
return sizes
|
99 |
+
|
100 |
+
def encode_stylespace(self, x, return_vector: bool = True):
|
101 |
+
"""
|
102 |
+
encode to style space
|
103 |
+
"""
|
104 |
+
modules = list(self.input_blocks.modules()) + list(
|
105 |
+
self.middle_block.modules()) + list(self.output_blocks.modules())
|
106 |
+
# (n, c)
|
107 |
+
cond = self.encoder.forward(x)
|
108 |
+
S = []
|
109 |
+
for module in modules:
|
110 |
+
if isinstance(module, ResBlock):
|
111 |
+
# (n, c')
|
112 |
+
s = module.cond_emb_layers.forward(cond)
|
113 |
+
S.append(s)
|
114 |
+
|
115 |
+
if return_vector:
|
116 |
+
# (n, sum_c)
|
117 |
+
return torch.cat(S, dim=1)
|
118 |
+
else:
|
119 |
+
return S
|
120 |
+
|
121 |
+
def forward(self,
|
122 |
+
x,
|
123 |
+
t,
|
124 |
+
y=None,
|
125 |
+
x_start=None,
|
126 |
+
cond=None,
|
127 |
+
style=None,
|
128 |
+
noise=None,
|
129 |
+
t_cond=None,
|
130 |
+
**kwargs):
|
131 |
+
"""
|
132 |
+
Apply the model to an input batch.
|
133 |
+
|
134 |
+
Args:
|
135 |
+
x_start: the original image to encode
|
136 |
+
cond: output of the encoder
|
137 |
+
noise: random noise (to predict the cond)
|
138 |
+
"""
|
139 |
+
|
140 |
+
if t_cond is None:
|
141 |
+
t_cond = t
|
142 |
+
|
143 |
+
if noise is not None:
|
144 |
+
# if the noise is given, we predict the cond from noise
|
145 |
+
cond = self.noise_to_cond(noise)
|
146 |
+
|
147 |
+
if cond is None:
|
148 |
+
if x is not None:
|
149 |
+
assert len(x) == len(x_start), f'{len(x)} != {len(x_start)}'
|
150 |
+
|
151 |
+
tmp = self.encode(x_start)
|
152 |
+
cond = tmp['cond']
|
153 |
+
|
154 |
+
if t is not None:
|
155 |
+
_t_emb = timestep_embedding(t, self.conf.model_channels)
|
156 |
+
_t_cond_emb = timestep_embedding(t_cond, self.conf.model_channels)
|
157 |
+
else:
|
158 |
+
# this happens when training only autoenc
|
159 |
+
_t_emb = None
|
160 |
+
_t_cond_emb = None
|
161 |
+
|
162 |
+
if self.conf.resnet_two_cond:
|
163 |
+
res = self.time_embed.forward(
|
164 |
+
time_emb=_t_emb,
|
165 |
+
cond=cond,
|
166 |
+
time_cond_emb=_t_cond_emb,
|
167 |
+
)
|
168 |
+
else:
|
169 |
+
raise NotImplementedError()
|
170 |
+
|
171 |
+
if self.conf.resnet_two_cond:
|
172 |
+
# two cond: first = time emb, second = cond_emb
|
173 |
+
emb = res.time_emb
|
174 |
+
cond_emb = res.emb
|
175 |
+
else:
|
176 |
+
# one cond = combined of both time and cond
|
177 |
+
emb = res.emb
|
178 |
+
cond_emb = None
|
179 |
+
|
180 |
+
# override the style if given
|
181 |
+
style = style or res.style
|
182 |
+
|
183 |
+
assert (y is not None) == (
|
184 |
+
self.conf.num_classes is not None
|
185 |
+
), "must specify y if and only if the model is class-conditional"
|
186 |
+
|
187 |
+
if self.conf.num_classes is not None:
|
188 |
+
raise NotImplementedError()
|
189 |
+
# assert y.shape == (x.shape[0], )
|
190 |
+
# emb = emb + self.label_emb(y)
|
191 |
+
|
192 |
+
# where in the model to supply time conditions
|
193 |
+
enc_time_emb = emb
|
194 |
+
mid_time_emb = emb
|
195 |
+
dec_time_emb = emb
|
196 |
+
# where in the model to supply style conditions
|
197 |
+
enc_cond_emb = cond_emb
|
198 |
+
mid_cond_emb = cond_emb
|
199 |
+
dec_cond_emb = cond_emb
|
200 |
+
|
201 |
+
# hs = []
|
202 |
+
hs = [[] for _ in range(len(self.conf.channel_mult))]
|
203 |
+
|
204 |
+
if x is not None:
|
205 |
+
h = x.type(self.dtype)
|
206 |
+
|
207 |
+
# input blocks
|
208 |
+
k = 0
|
209 |
+
for i in range(len(self.input_num_blocks)):
|
210 |
+
for j in range(self.input_num_blocks[i]):
|
211 |
+
h = self.input_blocks[k](h,
|
212 |
+
emb=enc_time_emb,
|
213 |
+
cond=enc_cond_emb)
|
214 |
+
|
215 |
+
# print(i, j, h.shape)
|
216 |
+
hs[i].append(h)
|
217 |
+
k += 1
|
218 |
+
assert k == len(self.input_blocks)
|
219 |
+
|
220 |
+
# middle blocks
|
221 |
+
h = self.middle_block(h, emb=mid_time_emb, cond=mid_cond_emb)
|
222 |
+
else:
|
223 |
+
# no lateral connections
|
224 |
+
# happens when training only the autonecoder
|
225 |
+
h = None
|
226 |
+
hs = [[] for _ in range(len(self.conf.channel_mult))]
|
227 |
+
|
228 |
+
# output blocks
|
229 |
+
k = 0
|
230 |
+
for i in range(len(self.output_num_blocks)):
|
231 |
+
for j in range(self.output_num_blocks[i]):
|
232 |
+
# take the lateral connection from the same layer (in reserve)
|
233 |
+
# until there is no more, use None
|
234 |
+
try:
|
235 |
+
lateral = hs[-i - 1].pop()
|
236 |
+
# print(i, j, lateral.shape)
|
237 |
+
except IndexError:
|
238 |
+
lateral = None
|
239 |
+
# print(i, j, lateral)
|
240 |
+
|
241 |
+
h = self.output_blocks[k](h,
|
242 |
+
emb=dec_time_emb,
|
243 |
+
cond=dec_cond_emb,
|
244 |
+
lateral=lateral)
|
245 |
+
k += 1
|
246 |
+
|
247 |
+
pred = self.out(h)
|
248 |
+
return AutoencReturn(pred=pred, cond=cond)
|
249 |
+
|
250 |
+
|
251 |
+
class AutoencReturn(NamedTuple):
|
252 |
+
pred: Tensor
|
253 |
+
cond: Tensor = None
|
254 |
+
|
255 |
+
|
256 |
+
class EmbedReturn(NamedTuple):
|
257 |
+
# style and time
|
258 |
+
emb: Tensor = None
|
259 |
+
# time only
|
260 |
+
time_emb: Tensor = None
|
261 |
+
# style only (but could depend on time)
|
262 |
+
style: Tensor = None
|
263 |
+
|
264 |
+
|
265 |
+
class TimeStyleSeperateEmbed(nn.Module):
|
266 |
+
# embed only style
|
267 |
+
def __init__(self, time_channels, time_out_channels):
|
268 |
+
super().__init__()
|
269 |
+
self.time_embed = nn.Sequential(
|
270 |
+
linear(time_channels, time_out_channels),
|
271 |
+
nn.SiLU(),
|
272 |
+
linear(time_out_channels, time_out_channels),
|
273 |
+
)
|
274 |
+
self.style = nn.Identity()
|
275 |
+
|
276 |
+
def forward(self, time_emb=None, cond=None, **kwargs):
|
277 |
+
if time_emb is None:
|
278 |
+
# happens with autoenc training mode
|
279 |
+
time_emb = None
|
280 |
+
else:
|
281 |
+
time_emb = self.time_embed(time_emb)
|
282 |
+
style = self.style(cond)
|
283 |
+
return EmbedReturn(emb=style, time_emb=time_emb, style=style)
|
networks/__init__.py
ADDED
File without changes
|
networks/discriminator.py
ADDED
@@ -0,0 +1,259 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import torch
|
3 |
+
from torch.nn import functional as F
|
4 |
+
from torch import nn
|
5 |
+
|
6 |
+
|
7 |
+
def fused_leaky_relu(input, bias, negative_slope=0.2, scale=2 ** 0.5):
|
8 |
+
return F.leaky_relu(input + bias, negative_slope) * scale
|
9 |
+
|
10 |
+
|
11 |
+
class FusedLeakyReLU(nn.Module):
|
12 |
+
def __init__(self, channel, negative_slope=0.2, scale=2 ** 0.5):
|
13 |
+
super().__init__()
|
14 |
+
self.bias = nn.Parameter(torch.zeros(1, channel, 1, 1))
|
15 |
+
self.negative_slope = negative_slope
|
16 |
+
self.scale = scale
|
17 |
+
|
18 |
+
def forward(self, input):
|
19 |
+
# print("FusedLeakyReLU: ", input.abs().mean())
|
20 |
+
out = fused_leaky_relu(input, self.bias, self.negative_slope, self.scale)
|
21 |
+
# print("FusedLeakyReLU: ", out.abs().mean())
|
22 |
+
return out
|
23 |
+
|
24 |
+
|
25 |
+
def upfirdn2d_native(input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1):
|
26 |
+
_, minor, in_h, in_w = input.shape
|
27 |
+
kernel_h, kernel_w = kernel.shape
|
28 |
+
|
29 |
+
out = input.view(-1, minor, in_h, 1, in_w, 1)
|
30 |
+
out = F.pad(out, [0, up_x - 1, 0, 0, 0, up_y - 1, 0, 0])
|
31 |
+
out = out.view(-1, minor, in_h * up_y, in_w * up_x)
|
32 |
+
|
33 |
+
out = F.pad(out, [max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0), max(pad_y1, 0)])
|
34 |
+
out = out[:, :, max(-pad_y0, 0): out.shape[2] - max(-pad_y1, 0), max(-pad_x0, 0): out.shape[3] - max(-pad_x1, 0), ]
|
35 |
+
|
36 |
+
# out = out.permute(0, 3, 1, 2)
|
37 |
+
out = out.reshape([-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x + pad_x0 + pad_x1])
|
38 |
+
w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w)
|
39 |
+
out = F.conv2d(out, w)
|
40 |
+
out = out.reshape(-1, minor, in_h * up_y + pad_y0 + pad_y1 - kernel_h + 1,
|
41 |
+
in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1, )
|
42 |
+
# out = out.permute(0, 2, 3, 1)
|
43 |
+
|
44 |
+
return out[:, :, ::down_y, ::down_x]
|
45 |
+
|
46 |
+
|
47 |
+
def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)):
|
48 |
+
return upfirdn2d_native(input, kernel, up, up, down, down, pad[0], pad[1], pad[0], pad[1])
|
49 |
+
|
50 |
+
|
51 |
+
def make_kernel(k):
|
52 |
+
k = torch.tensor(k, dtype=torch.float32)
|
53 |
+
|
54 |
+
if k.ndim == 1:
|
55 |
+
k = k[None, :] * k[:, None]
|
56 |
+
|
57 |
+
k /= k.sum()
|
58 |
+
|
59 |
+
return k
|
60 |
+
|
61 |
+
|
62 |
+
class Blur(nn.Module):
|
63 |
+
def __init__(self, kernel, pad, upsample_factor=1):
|
64 |
+
super().__init__()
|
65 |
+
|
66 |
+
kernel = make_kernel(kernel)
|
67 |
+
|
68 |
+
if upsample_factor > 1:
|
69 |
+
kernel = kernel * (upsample_factor ** 2)
|
70 |
+
|
71 |
+
self.register_buffer('kernel', kernel)
|
72 |
+
|
73 |
+
self.pad = pad
|
74 |
+
|
75 |
+
def forward(self, input):
|
76 |
+
return upfirdn2d(input, self.kernel, pad=self.pad)
|
77 |
+
|
78 |
+
|
79 |
+
class ScaledLeakyReLU(nn.Module):
|
80 |
+
def __init__(self, negative_slope=0.2):
|
81 |
+
super().__init__()
|
82 |
+
|
83 |
+
self.negative_slope = negative_slope
|
84 |
+
|
85 |
+
def forward(self, input):
|
86 |
+
return F.leaky_relu(input, negative_slope=self.negative_slope)
|
87 |
+
|
88 |
+
|
89 |
+
class EqualConv2d(nn.Module):
|
90 |
+
def __init__(self, in_channel, out_channel, kernel_size, stride=1, padding=0, bias=True):
|
91 |
+
super().__init__()
|
92 |
+
|
93 |
+
self.weight = nn.Parameter(torch.randn(out_channel, in_channel, kernel_size, kernel_size))
|
94 |
+
self.scale = 1 / math.sqrt(in_channel * kernel_size ** 2)
|
95 |
+
|
96 |
+
self.stride = stride
|
97 |
+
self.padding = padding
|
98 |
+
|
99 |
+
if bias:
|
100 |
+
self.bias = nn.Parameter(torch.zeros(out_channel))
|
101 |
+
else:
|
102 |
+
self.bias = None
|
103 |
+
|
104 |
+
def forward(self, input):
|
105 |
+
|
106 |
+
return F.conv2d(input, self.weight * self.scale, bias=self.bias, stride=self.stride,
|
107 |
+
padding=self.padding, )
|
108 |
+
|
109 |
+
def __repr__(self):
|
110 |
+
return (
|
111 |
+
f'{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]},'
|
112 |
+
f' {self.weight.shape[2]}, stride={self.stride}, padding={self.padding})'
|
113 |
+
)
|
114 |
+
|
115 |
+
|
116 |
+
class EqualLinear(nn.Module):
|
117 |
+
def __init__(self, in_dim, out_dim, bias=True, bias_init=0, lr_mul=1, activation=None):
|
118 |
+
super().__init__()
|
119 |
+
|
120 |
+
self.weight = nn.Parameter(torch.randn(out_dim, in_dim).div_(lr_mul))
|
121 |
+
|
122 |
+
if bias:
|
123 |
+
self.bias = nn.Parameter(torch.zeros(out_dim).fill_(bias_init))
|
124 |
+
else:
|
125 |
+
self.bias = None
|
126 |
+
|
127 |
+
self.activation = activation
|
128 |
+
|
129 |
+
self.scale = (1 / math.sqrt(in_dim)) * lr_mul
|
130 |
+
self.lr_mul = lr_mul
|
131 |
+
|
132 |
+
def forward(self, input):
|
133 |
+
|
134 |
+
if self.activation:
|
135 |
+
out = F.linear(input, self.weight * self.scale)
|
136 |
+
out = fused_leaky_relu(out, self.bias * self.lr_mul)
|
137 |
+
else:
|
138 |
+
out = F.linear(input, self.weight * self.scale, bias=self.bias * self.lr_mul)
|
139 |
+
|
140 |
+
return out
|
141 |
+
|
142 |
+
def __repr__(self):
|
143 |
+
return (f'{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]})')
|
144 |
+
|
145 |
+
|
146 |
+
class ConvLayer(nn.Sequential):
|
147 |
+
def __init__(
|
148 |
+
self,
|
149 |
+
in_channel,
|
150 |
+
out_channel,
|
151 |
+
kernel_size,
|
152 |
+
downsample=False,
|
153 |
+
blur_kernel=[1, 3, 3, 1],
|
154 |
+
bias=True,
|
155 |
+
activate=True,
|
156 |
+
):
|
157 |
+
layers = []
|
158 |
+
|
159 |
+
if downsample:
|
160 |
+
factor = 2
|
161 |
+
p = (len(blur_kernel) - factor) + (kernel_size - 1)
|
162 |
+
pad0 = (p + 1) // 2
|
163 |
+
pad1 = p // 2
|
164 |
+
|
165 |
+
layers.append(Blur(blur_kernel, pad=(pad0, pad1)))
|
166 |
+
|
167 |
+
stride = 2
|
168 |
+
self.padding = 0
|
169 |
+
|
170 |
+
else:
|
171 |
+
stride = 1
|
172 |
+
self.padding = kernel_size // 2
|
173 |
+
|
174 |
+
layers.append(EqualConv2d(in_channel, out_channel, kernel_size, padding=self.padding, stride=stride,
|
175 |
+
bias=bias and not activate))
|
176 |
+
|
177 |
+
if activate:
|
178 |
+
if bias:
|
179 |
+
layers.append(FusedLeakyReLU(out_channel))
|
180 |
+
else:
|
181 |
+
layers.append(ScaledLeakyReLU(0.2))
|
182 |
+
|
183 |
+
super().__init__(*layers)
|
184 |
+
|
185 |
+
|
186 |
+
class ResBlock(nn.Module):
|
187 |
+
def __init__(self, in_channel, out_channel, blur_kernel=[1, 3, 3, 1]):
|
188 |
+
super().__init__()
|
189 |
+
|
190 |
+
self.conv1 = ConvLayer(in_channel, in_channel, 3)
|
191 |
+
self.conv2 = ConvLayer(in_channel, out_channel, 3, downsample=True)
|
192 |
+
|
193 |
+
self.skip = ConvLayer(in_channel, out_channel, 1, downsample=True, activate=False, bias=False)
|
194 |
+
|
195 |
+
def forward(self, input):
|
196 |
+
out = self.conv1(input)
|
197 |
+
out = self.conv2(out)
|
198 |
+
|
199 |
+
skip = self.skip(input)
|
200 |
+
out = (out + skip) / math.sqrt(2)
|
201 |
+
|
202 |
+
return out
|
203 |
+
|
204 |
+
|
205 |
+
class Discriminator(nn.Module):
|
206 |
+
def __init__(self, size, channel_multiplier=1, blur_kernel=[1, 3, 3, 1]):
|
207 |
+
super().__init__()
|
208 |
+
|
209 |
+
self.size = size
|
210 |
+
|
211 |
+
channels = {
|
212 |
+
4: 512,
|
213 |
+
8: 512,
|
214 |
+
16: 512,
|
215 |
+
32: 512,
|
216 |
+
64: 256 * channel_multiplier,
|
217 |
+
128: 128 * channel_multiplier,
|
218 |
+
256: 64 * channel_multiplier,
|
219 |
+
512: 32 * channel_multiplier,
|
220 |
+
1024: 16 * channel_multiplier,
|
221 |
+
}
|
222 |
+
|
223 |
+
convs = [ConvLayer(3, channels[size], 1)]
|
224 |
+
log_size = int(math.log(size, 2))
|
225 |
+
in_channel = channels[size]
|
226 |
+
|
227 |
+
for i in range(log_size, 2, -1):
|
228 |
+
out_channel = channels[2 ** (i - 1)]
|
229 |
+
convs.append(ResBlock(in_channel, out_channel, blur_kernel))
|
230 |
+
in_channel = out_channel
|
231 |
+
|
232 |
+
self.convs = nn.Sequential(*convs)
|
233 |
+
|
234 |
+
self.stddev_group = 4
|
235 |
+
self.stddev_feat = 1
|
236 |
+
|
237 |
+
self.final_conv = ConvLayer(in_channel + 1, channels[4], 3)
|
238 |
+
self.final_linear = nn.Sequential(
|
239 |
+
EqualLinear(channels[4] * 4 * 4, channels[4], activation='fused_lrelu'),
|
240 |
+
EqualLinear(channels[4], 1),
|
241 |
+
)
|
242 |
+
|
243 |
+
def forward(self, input):
|
244 |
+
out = self.convs(input)
|
245 |
+
batch, channel, height, width = out.shape
|
246 |
+
|
247 |
+
group = min(batch, self.stddev_group)
|
248 |
+
stddev = out.view(group, -1, self.stddev_feat, channel // self.stddev_feat, height, width)
|
249 |
+
stddev = torch.sqrt(stddev.var(0, unbiased=False) + 1e-8)
|
250 |
+
stddev = stddev.mean([2, 3, 4], keepdims=True).squeeze(2)
|
251 |
+
stddev = stddev.repeat(group, 1, height, width)
|
252 |
+
out = torch.cat([out, stddev], 1)
|
253 |
+
|
254 |
+
out = self.final_conv(out)
|
255 |
+
|
256 |
+
out = out.view(batch, -1)
|
257 |
+
out = self.final_linear(out)
|
258 |
+
|
259 |
+
return out
|
networks/encoder.py
ADDED
@@ -0,0 +1,374 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import torch
|
3 |
+
from torch import nn
|
4 |
+
from torch.nn import functional as F
|
5 |
+
|
6 |
+
def fused_leaky_relu(input, bias, negative_slope=0.2, scale=2 ** 0.5):
|
7 |
+
return F.leaky_relu(input + bias, negative_slope) * scale
|
8 |
+
|
9 |
+
class FusedLeakyReLU(nn.Module):
|
10 |
+
def __init__(self, channel, negative_slope=0.2, scale=2 ** 0.5):
|
11 |
+
super().__init__()
|
12 |
+
self.bias = nn.Parameter(torch.zeros(1, channel, 1, 1))
|
13 |
+
self.negative_slope = negative_slope
|
14 |
+
self.scale = scale
|
15 |
+
|
16 |
+
def forward(self, input):
|
17 |
+
out = fused_leaky_relu(input, self.bias, self.negative_slope, self.scale)
|
18 |
+
return out
|
19 |
+
|
20 |
+
|
21 |
+
def upfirdn2d_native(input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1):
|
22 |
+
_, minor, in_h, in_w = input.shape
|
23 |
+
kernel_h, kernel_w = kernel.shape
|
24 |
+
|
25 |
+
out = input.view(-1, minor, in_h, 1, in_w, 1)
|
26 |
+
out = F.pad(out, [0, up_x - 1, 0, 0, 0, up_y - 1, 0, 0])
|
27 |
+
out = out.view(-1, minor, in_h * up_y, in_w * up_x)
|
28 |
+
|
29 |
+
out = F.pad(out, [max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0), max(pad_y1, 0)])
|
30 |
+
out = out[:, :, max(-pad_y0, 0): out.shape[2] - max(-pad_y1, 0),
|
31 |
+
max(-pad_x0, 0): out.shape[3] - max(-pad_x1, 0), ]
|
32 |
+
|
33 |
+
out = out.reshape([-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x + pad_x0 + pad_x1])
|
34 |
+
w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w)
|
35 |
+
out = F.conv2d(out, w)
|
36 |
+
out = out.reshape(-1, minor, in_h * up_y + pad_y0 + pad_y1 - kernel_h + 1,
|
37 |
+
in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1, )
|
38 |
+
|
39 |
+
return out[:, :, ::down_y, ::down_x]
|
40 |
+
|
41 |
+
|
42 |
+
def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)):
|
43 |
+
return upfirdn2d_native(input, kernel, up, up, down, down, pad[0], pad[1], pad[0], pad[1])
|
44 |
+
|
45 |
+
|
46 |
+
def make_kernel(k):
|
47 |
+
k = torch.tensor(k, dtype=torch.float32)
|
48 |
+
|
49 |
+
if k.ndim == 1:
|
50 |
+
k = k[None, :] * k[:, None]
|
51 |
+
|
52 |
+
k /= k.sum()
|
53 |
+
|
54 |
+
return k
|
55 |
+
|
56 |
+
|
57 |
+
class Blur(nn.Module):
|
58 |
+
def __init__(self, kernel, pad, upsample_factor=1):
|
59 |
+
super().__init__()
|
60 |
+
|
61 |
+
kernel = make_kernel(kernel)
|
62 |
+
|
63 |
+
if upsample_factor > 1:
|
64 |
+
kernel = kernel * (upsample_factor ** 2)
|
65 |
+
|
66 |
+
self.register_buffer('kernel', kernel)
|
67 |
+
|
68 |
+
self.pad = pad
|
69 |
+
|
70 |
+
def forward(self, input):
|
71 |
+
return upfirdn2d(input, self.kernel, pad=self.pad)
|
72 |
+
|
73 |
+
|
74 |
+
class ScaledLeakyReLU(nn.Module):
|
75 |
+
def __init__(self, negative_slope=0.2):
|
76 |
+
super().__init__()
|
77 |
+
|
78 |
+
self.negative_slope = negative_slope
|
79 |
+
|
80 |
+
def forward(self, input):
|
81 |
+
return F.leaky_relu(input, negative_slope=self.negative_slope)
|
82 |
+
|
83 |
+
|
84 |
+
class EqualConv2d(nn.Module):
|
85 |
+
def __init__(self, in_channel, out_channel, kernel_size, stride=1, padding=0, bias=True):
|
86 |
+
super().__init__()
|
87 |
+
|
88 |
+
self.weight = nn.Parameter(torch.randn(out_channel, in_channel, kernel_size, kernel_size))
|
89 |
+
self.scale = 1 / math.sqrt(in_channel * kernel_size ** 2)
|
90 |
+
|
91 |
+
self.stride = stride
|
92 |
+
self.padding = padding
|
93 |
+
|
94 |
+
if bias:
|
95 |
+
self.bias = nn.Parameter(torch.zeros(out_channel))
|
96 |
+
else:
|
97 |
+
self.bias = None
|
98 |
+
|
99 |
+
def forward(self, input):
|
100 |
+
|
101 |
+
return F.conv2d(input, self.weight * self.scale, bias=self.bias, stride=self.stride, padding=self.padding)
|
102 |
+
|
103 |
+
def __repr__(self):
|
104 |
+
return (
|
105 |
+
f'{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]},'
|
106 |
+
f' {self.weight.shape[2]}, stride={self.stride}, padding={self.padding})'
|
107 |
+
)
|
108 |
+
|
109 |
+
|
110 |
+
class EqualLinear(nn.Module):
|
111 |
+
def __init__(self, in_dim, out_dim, bias=True, bias_init=0, lr_mul=1, activation=None):
|
112 |
+
super().__init__()
|
113 |
+
|
114 |
+
self.weight = nn.Parameter(torch.randn(out_dim, in_dim).div_(lr_mul))
|
115 |
+
|
116 |
+
if bias:
|
117 |
+
self.bias = nn.Parameter(torch.zeros(out_dim).fill_(bias_init))
|
118 |
+
else:
|
119 |
+
self.bias = None
|
120 |
+
|
121 |
+
self.activation = activation
|
122 |
+
|
123 |
+
self.scale = (1 / math.sqrt(in_dim)) * lr_mul
|
124 |
+
self.lr_mul = lr_mul
|
125 |
+
|
126 |
+
def forward(self, input):
|
127 |
+
|
128 |
+
if self.activation:
|
129 |
+
out = F.linear(input, self.weight * self.scale)
|
130 |
+
out = fused_leaky_relu(out, self.bias * self.lr_mul)
|
131 |
+
else:
|
132 |
+
out = F.linear(input, self.weight * self.scale, bias=self.bias * self.lr_mul)
|
133 |
+
|
134 |
+
return out
|
135 |
+
|
136 |
+
def __repr__(self):
|
137 |
+
return (f'{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]})')
|
138 |
+
|
139 |
+
|
140 |
+
class ConvLayer(nn.Sequential):
|
141 |
+
def __init__(
|
142 |
+
self,
|
143 |
+
in_channel,
|
144 |
+
out_channel,
|
145 |
+
kernel_size,
|
146 |
+
downsample=False,
|
147 |
+
blur_kernel=[1, 3, 3, 1],
|
148 |
+
bias=True,
|
149 |
+
activate=True,
|
150 |
+
):
|
151 |
+
layers = []
|
152 |
+
|
153 |
+
if downsample:
|
154 |
+
factor = 2
|
155 |
+
p = (len(blur_kernel) - factor) + (kernel_size - 1)
|
156 |
+
pad0 = (p + 1) // 2
|
157 |
+
pad1 = p // 2
|
158 |
+
|
159 |
+
layers.append(Blur(blur_kernel, pad=(pad0, pad1)))
|
160 |
+
|
161 |
+
stride = 2
|
162 |
+
self.padding = 0
|
163 |
+
|
164 |
+
else:
|
165 |
+
stride = 1
|
166 |
+
self.padding = kernel_size // 2
|
167 |
+
|
168 |
+
layers.append(EqualConv2d(in_channel, out_channel, kernel_size, padding=self.padding, stride=stride,
|
169 |
+
bias=bias and not activate))
|
170 |
+
|
171 |
+
if activate:
|
172 |
+
if bias:
|
173 |
+
layers.append(FusedLeakyReLU(out_channel))
|
174 |
+
else:
|
175 |
+
layers.append(ScaledLeakyReLU(0.2))
|
176 |
+
|
177 |
+
super().__init__(*layers)
|
178 |
+
|
179 |
+
|
180 |
+
class ResBlock(nn.Module):
|
181 |
+
def __init__(self, in_channel, out_channel, blur_kernel=[1, 3, 3, 1]):
|
182 |
+
super().__init__()
|
183 |
+
|
184 |
+
self.conv1 = ConvLayer(in_channel, in_channel, 3)
|
185 |
+
self.conv2 = ConvLayer(in_channel, out_channel, 3, downsample=True)
|
186 |
+
|
187 |
+
self.skip = ConvLayer(in_channel, out_channel, 1, downsample=True, activate=False, bias=False)
|
188 |
+
|
189 |
+
def forward(self, input):
|
190 |
+
out = self.conv1(input)
|
191 |
+
out = self.conv2(out)
|
192 |
+
|
193 |
+
skip = self.skip(input)
|
194 |
+
out = (out + skip) / math.sqrt(2)
|
195 |
+
|
196 |
+
return out
|
197 |
+
|
198 |
+
class WeightedSumLayer(nn.Module):
|
199 |
+
def __init__(self, num_tensors=8):
|
200 |
+
super(WeightedSumLayer, self).__init__()
|
201 |
+
|
202 |
+
self.weights = nn.Parameter(torch.randn(num_tensors))
|
203 |
+
|
204 |
+
def forward(self, tensor_list):
|
205 |
+
|
206 |
+
weights = torch.softmax(self.weights, dim=0)
|
207 |
+
weighted_sum = torch.zeros_like(tensor_list[0])
|
208 |
+
for tensor, weight in zip(tensor_list, weights):
|
209 |
+
weighted_sum += tensor * weight
|
210 |
+
|
211 |
+
return weighted_sum
|
212 |
+
|
213 |
+
class EncoderApp(nn.Module):
|
214 |
+
def __init__(self, size, w_dim=512, fusion_type=''):
|
215 |
+
super(EncoderApp, self).__init__()
|
216 |
+
|
217 |
+
channels = {
|
218 |
+
4: 512,
|
219 |
+
8: 512,
|
220 |
+
16: 512,
|
221 |
+
32: 512,
|
222 |
+
64: 256,
|
223 |
+
128: 128,
|
224 |
+
256: 64,
|
225 |
+
512: 32,
|
226 |
+
1024: 16
|
227 |
+
}
|
228 |
+
|
229 |
+
self.w_dim = w_dim
|
230 |
+
log_size = int(math.log(size, 2))
|
231 |
+
|
232 |
+
self.convs = nn.ModuleList()
|
233 |
+
self.convs.append(ConvLayer(3, channels[size], 1))
|
234 |
+
|
235 |
+
in_channel = channels[size]
|
236 |
+
for i in range(log_size, 2, -1):
|
237 |
+
out_channel = channels[2 ** (i - 1)]
|
238 |
+
self.convs.append(ResBlock(in_channel, out_channel))
|
239 |
+
in_channel = out_channel
|
240 |
+
|
241 |
+
self.convs.append(EqualConv2d(in_channel, self.w_dim, 4, padding=0, bias=False))
|
242 |
+
|
243 |
+
self.fusion_type = fusion_type
|
244 |
+
assert self.fusion_type == 'weighted_sum'
|
245 |
+
if self.fusion_type == 'weighted_sum':
|
246 |
+
print(f'HAL layer is enabled!')
|
247 |
+
self.adaptive_pool = nn.AdaptiveAvgPool2d((1, 1))
|
248 |
+
self.fc1 = EqualLinear(64, 512)
|
249 |
+
self.fc2 = EqualLinear(128, 512)
|
250 |
+
self.fc3 = EqualLinear(256, 512)
|
251 |
+
self.ws = WeightedSumLayer()
|
252 |
+
|
253 |
+
def forward(self, x):
|
254 |
+
|
255 |
+
res = []
|
256 |
+
h = x
|
257 |
+
pooled_h_lists = []
|
258 |
+
for i, conv in enumerate(self.convs):
|
259 |
+
h = conv(h)
|
260 |
+
if self.fusion_type == 'weighted_sum':
|
261 |
+
pooled_h = self.adaptive_pool(h).view(x.size(0), -1)
|
262 |
+
if i == 0:
|
263 |
+
pooled_h_lists.append(self.fc1(pooled_h))
|
264 |
+
elif i == 1:
|
265 |
+
pooled_h_lists.append(self.fc2(pooled_h))
|
266 |
+
elif i == 2:
|
267 |
+
pooled_h_lists.append(self.fc3(pooled_h))
|
268 |
+
else:
|
269 |
+
pooled_h_lists.append(pooled_h)
|
270 |
+
res.append(h)
|
271 |
+
|
272 |
+
if self.fusion_type == 'weighted_sum':
|
273 |
+
last_layer = self.ws(pooled_h_lists)
|
274 |
+
else:
|
275 |
+
last_layer = res[-1].squeeze(-1).squeeze(-1)
|
276 |
+
layer_features = res[::-1][2:]
|
277 |
+
|
278 |
+
return last_layer, layer_features
|
279 |
+
|
280 |
+
|
281 |
+
class DecouplingModel(nn.Module):
|
282 |
+
def __init__(self, input_dim, hidden_dim, output_dim):
|
283 |
+
super(DecouplingModel, self).__init__()
|
284 |
+
|
285 |
+
# identity_excluded_net is called identity encoder in the paper
|
286 |
+
self.identity_net = nn.Sequential(
|
287 |
+
nn.Linear(input_dim, hidden_dim),
|
288 |
+
nn.ReLU(),
|
289 |
+
nn.Linear(hidden_dim, output_dim)
|
290 |
+
)
|
291 |
+
|
292 |
+
self.identity_net_density = nn.Sequential(
|
293 |
+
nn.Linear(input_dim, hidden_dim),
|
294 |
+
nn.ReLU(),
|
295 |
+
nn.Linear(hidden_dim, output_dim)
|
296 |
+
)
|
297 |
+
|
298 |
+
# identity_excluded_net is called motion encoder in the paper
|
299 |
+
self.identity_excluded_net = nn.Sequential(
|
300 |
+
nn.Linear(input_dim, hidden_dim),
|
301 |
+
nn.ReLU(),
|
302 |
+
nn.Linear(hidden_dim, output_dim)
|
303 |
+
)
|
304 |
+
|
305 |
+
def forward(self, x):
|
306 |
+
|
307 |
+
id_, id_rm = self.identity_net(x), self.identity_excluded_net(x)
|
308 |
+
id_density = self.identity_net_density(id_)
|
309 |
+
return id_, id_rm, id_density
|
310 |
+
|
311 |
+
class Encoder(nn.Module):
|
312 |
+
def __init__(self, size, dim=512, dim_motion=20, weighted_sum=False):
|
313 |
+
super(Encoder, self).__init__()
|
314 |
+
|
315 |
+
# image encoder
|
316 |
+
self.net_app = EncoderApp(size, dim, weighted_sum)
|
317 |
+
|
318 |
+
# decouping network
|
319 |
+
self.net_decouping = DecouplingModel(dim, dim, dim)
|
320 |
+
|
321 |
+
# part of the motion encoder
|
322 |
+
fc = [EqualLinear(dim, dim)]
|
323 |
+
for i in range(3):
|
324 |
+
fc.append(EqualLinear(dim, dim))
|
325 |
+
|
326 |
+
fc.append(EqualLinear(dim, dim_motion))
|
327 |
+
self.fc = nn.Sequential(*fc)
|
328 |
+
|
329 |
+
def enc_app(self, x):
|
330 |
+
|
331 |
+
h_source = self.net_app(x)
|
332 |
+
|
333 |
+
return h_source
|
334 |
+
|
335 |
+
def enc_motion(self, x):
|
336 |
+
|
337 |
+
h, _ = self.net_app(x)
|
338 |
+
h_motion = self.fc(h)
|
339 |
+
|
340 |
+
return h_motion
|
341 |
+
|
342 |
+
def encode_image_obj(self, image_obj):
|
343 |
+
feat, _ = self.net_app(image_obj)
|
344 |
+
id_emb, idrm_emb, id_density_emb = self.net_decouping(feat)
|
345 |
+
return id_emb, idrm_emb, id_density_emb
|
346 |
+
|
347 |
+
def forward(self, input_source, input_target, input_face, input_aug):
|
348 |
+
|
349 |
+
|
350 |
+
if input_target is not None:
|
351 |
+
|
352 |
+
h_source, feats = self.net_app(input_source)
|
353 |
+
h_target, _ = self.net_app(input_target)
|
354 |
+
h_face, _ = self.net_app(input_face)
|
355 |
+
h_aug, _ = self.net_app(input_aug)
|
356 |
+
|
357 |
+
h_source_id_emb, h_source_idrm_emb, h_source_id_density_emb = self.net_decouping(h_source)
|
358 |
+
h_target_id_emb, h_target_idrm_emb, h_target_id_density_emb = self.net_decouping(h_target)
|
359 |
+
h_face_id_emb, h_face_idrm_emb, h_face_id_density_emb = self.net_decouping(h_face)
|
360 |
+
h_aug_id_emb, h_aug_idrm_emb, h_aug_id_density_emb = self.net_decouping(h_aug)
|
361 |
+
|
362 |
+
h_target_motion_target = self.fc(h_target_idrm_emb)
|
363 |
+
h_another_face_target = self.fc(h_face_idrm_emb)
|
364 |
+
|
365 |
+
else:
|
366 |
+
h_source, feats = self.net_app(input_source)
|
367 |
+
|
368 |
+
|
369 |
+
return {'h_source':h_source, 'h_motion':h_target_motion_target, 'feats':feats, 'h_another_face_target':h_another_face_target, 'h_face':h_face, \
|
370 |
+
'h_source_id_emb':h_source_id_emb, 'h_source_idrm_emb':h_source_idrm_emb, 'h_source_id_density_emb':h_source_id_density_emb, \
|
371 |
+
'h_target_id_emb':h_target_id_emb, 'h_target_idrm_emb':h_target_idrm_emb, 'h_target_id_density_emb':h_target_id_density_emb, \
|
372 |
+
'h_face_id_emb':h_face_id_emb, 'h_face_idrm_emb':h_face_idrm_emb, 'h_face_id_density_emb':h_face_id_density_emb, \
|
373 |
+
'h_aug_id_emb':h_aug_id_emb, 'h_aug_idrm_emb':h_aug_idrm_emb ,'h_aug_id_density_emb':h_aug_id_density_emb, \
|
374 |
+
}
|
networks/generator.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from torch import nn
|
2 |
+
from .encoder import Encoder
|
3 |
+
from .styledecoder import Synthesis
|
4 |
+
|
5 |
+
|
6 |
+
class Generator(nn.Module):
|
7 |
+
def __init__(self, size, style_dim=512, motion_dim=20, channel_multiplier=1, blur_kernel=[1, 3, 3, 1]):
|
8 |
+
super(Generator, self).__init__()
|
9 |
+
|
10 |
+
# encoder
|
11 |
+
self.enc = Encoder(size, style_dim, motion_dim)
|
12 |
+
self.dec = Synthesis(size, style_dim, motion_dim, blur_kernel, channel_multiplier)
|
13 |
+
|
14 |
+
def get_direction(self):
|
15 |
+
return self.dec.direction(None)
|
16 |
+
|
17 |
+
def synthesis(self, wa, alpha, feat):
|
18 |
+
img = self.dec(wa, alpha, feat)
|
19 |
+
|
20 |
+
return img
|
21 |
+
|
22 |
+
def forward(self, img_source, img_drive, h_start=None):
|
23 |
+
wa, alpha, feats = self.enc(img_source, img_drive, h_start)
|
24 |
+
# import pdb;pdb.set_trace()
|
25 |
+
img_recon = self.dec(wa, alpha, feats)
|
26 |
+
|
27 |
+
return img_recon
|
networks/styledecoder.py
ADDED
@@ -0,0 +1,527 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import torch
|
3 |
+
from torch import nn
|
4 |
+
from torch.nn import functional as F
|
5 |
+
import numpy as np
|
6 |
+
|
7 |
+
|
8 |
+
def fused_leaky_relu(input, bias, negative_slope=0.2, scale=2 ** 0.5):
|
9 |
+
return F.leaky_relu(input + bias, negative_slope) * scale
|
10 |
+
|
11 |
+
|
12 |
+
class FusedLeakyReLU(nn.Module):
|
13 |
+
def __init__(self, channel, negative_slope=0.2, scale=2 ** 0.5):
|
14 |
+
super().__init__()
|
15 |
+
self.bias = nn.Parameter(torch.zeros(1, channel, 1, 1))
|
16 |
+
self.negative_slope = negative_slope
|
17 |
+
self.scale = scale
|
18 |
+
|
19 |
+
def forward(self, input):
|
20 |
+
out = fused_leaky_relu(input, self.bias, self.negative_slope, self.scale)
|
21 |
+
return out
|
22 |
+
|
23 |
+
|
24 |
+
def upfirdn2d_native(input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1):
|
25 |
+
_, minor, in_h, in_w = input.shape
|
26 |
+
kernel_h, kernel_w = kernel.shape
|
27 |
+
|
28 |
+
out = input.view(-1, minor, in_h, 1, in_w, 1)
|
29 |
+
out = F.pad(out, [0, up_x - 1, 0, 0, 0, up_y - 1, 0, 0])
|
30 |
+
out = out.view(-1, minor, in_h * up_y, in_w * up_x)
|
31 |
+
|
32 |
+
out = F.pad(out, [max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0), max(pad_y1, 0)])
|
33 |
+
out = out[:, :, max(-pad_y0, 0): out.shape[2] - max(-pad_y1, 0),
|
34 |
+
max(-pad_x0, 0): out.shape[3] - max(-pad_x1, 0), ]
|
35 |
+
|
36 |
+
out = out.reshape([-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x + pad_x0 + pad_x1])
|
37 |
+
w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w)
|
38 |
+
out = F.conv2d(out, w)
|
39 |
+
out = out.reshape(-1, minor, in_h * up_y + pad_y0 + pad_y1 - kernel_h + 1,
|
40 |
+
in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1, )
|
41 |
+
return out[:, :, ::down_y, ::down_x]
|
42 |
+
|
43 |
+
|
44 |
+
def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)):
|
45 |
+
return upfirdn2d_native(input, kernel, up, up, down, down, pad[0], pad[1], pad[0], pad[1])
|
46 |
+
|
47 |
+
|
48 |
+
class PixelNorm(nn.Module):
|
49 |
+
def __init__(self):
|
50 |
+
super().__init__()
|
51 |
+
|
52 |
+
def forward(self, input):
|
53 |
+
return input * torch.rsqrt(torch.mean(input ** 2, dim=1, keepdim=True) + 1e-8)
|
54 |
+
|
55 |
+
|
56 |
+
class MotionPixelNorm(nn.Module):
|
57 |
+
def __init__(self):
|
58 |
+
super().__init__()
|
59 |
+
|
60 |
+
def forward(self, input):
|
61 |
+
return input * torch.rsqrt(torch.mean(input ** 2, dim=2, keepdim=True) + 1e-8)
|
62 |
+
|
63 |
+
|
64 |
+
def make_kernel(k):
|
65 |
+
k = torch.tensor(k, dtype=torch.float32)
|
66 |
+
|
67 |
+
if k.ndim == 1:
|
68 |
+
k = k[None, :] * k[:, None]
|
69 |
+
|
70 |
+
k /= k.sum()
|
71 |
+
|
72 |
+
return k
|
73 |
+
|
74 |
+
|
75 |
+
class Upsample(nn.Module):
|
76 |
+
def __init__(self, kernel, factor=2):
|
77 |
+
super().__init__()
|
78 |
+
|
79 |
+
self.factor = factor
|
80 |
+
kernel = make_kernel(kernel) * (factor ** 2)
|
81 |
+
self.register_buffer('kernel', kernel)
|
82 |
+
|
83 |
+
p = kernel.shape[0] - factor
|
84 |
+
|
85 |
+
pad0 = (p + 1) // 2 + factor - 1
|
86 |
+
pad1 = p // 2
|
87 |
+
|
88 |
+
self.pad = (pad0, pad1)
|
89 |
+
|
90 |
+
def forward(self, input):
|
91 |
+
return upfirdn2d(input, self.kernel, up=self.factor, down=1, pad=self.pad)
|
92 |
+
|
93 |
+
|
94 |
+
class Downsample(nn.Module):
|
95 |
+
def __init__(self, kernel, factor=2):
|
96 |
+
super().__init__()
|
97 |
+
|
98 |
+
self.factor = factor
|
99 |
+
kernel = make_kernel(kernel)
|
100 |
+
self.register_buffer('kernel', kernel)
|
101 |
+
|
102 |
+
p = kernel.shape[0] - factor
|
103 |
+
|
104 |
+
pad0 = (p + 1) // 2
|
105 |
+
pad1 = p // 2
|
106 |
+
|
107 |
+
self.pad = (pad0, pad1)
|
108 |
+
|
109 |
+
def forward(self, input):
|
110 |
+
return upfirdn2d(input, self.kernel, up=1, down=self.factor, pad=self.pad)
|
111 |
+
|
112 |
+
|
113 |
+
class Blur(nn.Module):
|
114 |
+
def __init__(self, kernel, pad, upsample_factor=1):
|
115 |
+
super().__init__()
|
116 |
+
|
117 |
+
kernel = make_kernel(kernel)
|
118 |
+
|
119 |
+
if upsample_factor > 1:
|
120 |
+
kernel = kernel * (upsample_factor ** 2)
|
121 |
+
|
122 |
+
self.register_buffer('kernel', kernel)
|
123 |
+
|
124 |
+
self.pad = pad
|
125 |
+
|
126 |
+
def forward(self, input):
|
127 |
+
return upfirdn2d(input, self.kernel, pad=self.pad)
|
128 |
+
|
129 |
+
|
130 |
+
class EqualConv2d(nn.Module):
|
131 |
+
def __init__(self, in_channel, out_channel, kernel_size, stride=1, padding=0, bias=True):
|
132 |
+
super().__init__()
|
133 |
+
|
134 |
+
self.weight = nn.Parameter(torch.randn(out_channel, in_channel, kernel_size, kernel_size))
|
135 |
+
self.scale = 1 / math.sqrt(in_channel * kernel_size ** 2)
|
136 |
+
|
137 |
+
self.stride = stride
|
138 |
+
self.padding = padding
|
139 |
+
|
140 |
+
if bias:
|
141 |
+
self.bias = nn.Parameter(torch.zeros(out_channel))
|
142 |
+
else:
|
143 |
+
self.bias = None
|
144 |
+
|
145 |
+
def forward(self, input):
|
146 |
+
|
147 |
+
return F.conv2d(input, self.weight * self.scale, bias=self.bias, stride=self.stride, padding=self.padding, )
|
148 |
+
|
149 |
+
def __repr__(self):
|
150 |
+
return (
|
151 |
+
f'{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]},'
|
152 |
+
f' {self.weight.shape[2]}, stride={self.stride}, padding={self.padding})'
|
153 |
+
)
|
154 |
+
|
155 |
+
|
156 |
+
class EqualLinear(nn.Module):
|
157 |
+
def __init__(self, in_dim, out_dim, bias=True, bias_init=0, lr_mul=1, activation=None):
|
158 |
+
super().__init__()
|
159 |
+
|
160 |
+
self.weight = nn.Parameter(torch.randn(out_dim, in_dim).div_(lr_mul))
|
161 |
+
|
162 |
+
if bias:
|
163 |
+
self.bias = nn.Parameter(torch.zeros(out_dim).fill_(bias_init))
|
164 |
+
else:
|
165 |
+
self.bias = None
|
166 |
+
|
167 |
+
self.activation = activation
|
168 |
+
|
169 |
+
self.scale = (1 / math.sqrt(in_dim)) * lr_mul
|
170 |
+
self.lr_mul = lr_mul
|
171 |
+
|
172 |
+
def forward(self, input):
|
173 |
+
|
174 |
+
if self.activation:
|
175 |
+
out = F.linear(input, self.weight * self.scale)
|
176 |
+
out = fused_leaky_relu(out, self.bias * self.lr_mul)
|
177 |
+
else:
|
178 |
+
out = F.linear(input, self.weight * self.scale, bias=self.bias * self.lr_mul)
|
179 |
+
|
180 |
+
return out
|
181 |
+
|
182 |
+
def __repr__(self):
|
183 |
+
return (f'{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]})')
|
184 |
+
|
185 |
+
|
186 |
+
class ScaledLeakyReLU(nn.Module):
|
187 |
+
def __init__(self, negative_slope=0.2):
|
188 |
+
super().__init__()
|
189 |
+
|
190 |
+
self.negative_slope = negative_slope
|
191 |
+
|
192 |
+
def forward(self, input):
|
193 |
+
return F.leaky_relu(input, negative_slope=self.negative_slope)
|
194 |
+
|
195 |
+
|
196 |
+
class ModulatedConv2d(nn.Module):
|
197 |
+
def __init__(self, in_channel, out_channel, kernel_size, style_dim, demodulate=True, upsample=False,
|
198 |
+
downsample=False, blur_kernel=[1, 3, 3, 1], ):
|
199 |
+
super().__init__()
|
200 |
+
|
201 |
+
self.eps = 1e-8
|
202 |
+
self.kernel_size = kernel_size
|
203 |
+
self.in_channel = in_channel
|
204 |
+
self.out_channel = out_channel
|
205 |
+
self.upsample = upsample
|
206 |
+
self.downsample = downsample
|
207 |
+
|
208 |
+
if upsample:
|
209 |
+
factor = 2
|
210 |
+
p = (len(blur_kernel) - factor) - (kernel_size - 1)
|
211 |
+
pad0 = (p + 1) // 2 + factor - 1
|
212 |
+
pad1 = p // 2 + 1
|
213 |
+
|
214 |
+
self.blur = Blur(blur_kernel, pad=(pad0, pad1), upsample_factor=factor)
|
215 |
+
|
216 |
+
if downsample:
|
217 |
+
factor = 2
|
218 |
+
p = (len(blur_kernel) - factor) + (kernel_size - 1)
|
219 |
+
pad0 = (p + 1) // 2
|
220 |
+
pad1 = p // 2
|
221 |
+
|
222 |
+
self.blur = Blur(blur_kernel, pad=(pad0, pad1))
|
223 |
+
|
224 |
+
fan_in = in_channel * kernel_size ** 2
|
225 |
+
self.scale = 1 / math.sqrt(fan_in)
|
226 |
+
self.padding = kernel_size // 2
|
227 |
+
|
228 |
+
self.weight = nn.Parameter(torch.randn(1, out_channel, in_channel, kernel_size, kernel_size))
|
229 |
+
|
230 |
+
self.modulation = EqualLinear(style_dim, in_channel, bias_init=1)
|
231 |
+
self.demodulate = demodulate
|
232 |
+
|
233 |
+
def __repr__(self):
|
234 |
+
return (
|
235 |
+
f'{self.__class__.__name__}({self.in_channel}, {self.out_channel}, {self.kernel_size}, '
|
236 |
+
f'upsample={self.upsample}, downsample={self.downsample})'
|
237 |
+
)
|
238 |
+
|
239 |
+
def forward(self, input, style):
|
240 |
+
batch, in_channel, height, width = input.shape
|
241 |
+
|
242 |
+
style = self.modulation(style).view(batch, 1, in_channel, 1, 1)
|
243 |
+
weight = self.scale * self.weight * style
|
244 |
+
|
245 |
+
if self.demodulate:
|
246 |
+
demod = torch.rsqrt(weight.pow(2).sum([2, 3, 4]) + 1e-8)
|
247 |
+
weight = weight * demod.view(batch, self.out_channel, 1, 1, 1)
|
248 |
+
|
249 |
+
weight = weight.view(batch * self.out_channel, in_channel, self.kernel_size, self.kernel_size)
|
250 |
+
|
251 |
+
if self.upsample:
|
252 |
+
input = input.view(1, batch * in_channel, height, width)
|
253 |
+
weight = weight.view(batch, self.out_channel, in_channel, self.kernel_size, self.kernel_size)
|
254 |
+
weight = weight.transpose(1, 2).reshape(batch * in_channel, self.out_channel, self.kernel_size,
|
255 |
+
self.kernel_size)
|
256 |
+
out = F.conv_transpose2d(input, weight, padding=0, stride=2, groups=batch)
|
257 |
+
_, _, height, width = out.shape
|
258 |
+
out = out.view(batch, self.out_channel, height, width)
|
259 |
+
out = self.blur(out)
|
260 |
+
elif self.downsample:
|
261 |
+
input = self.blur(input)
|
262 |
+
_, _, height, width = input.shape
|
263 |
+
input = input.view(1, batch * in_channel, height, width)
|
264 |
+
out = F.conv2d(input, weight, padding=0, stride=2, groups=batch)
|
265 |
+
_, _, height, width = out.shape
|
266 |
+
out = out.view(batch, self.out_channel, height, width)
|
267 |
+
else:
|
268 |
+
input = input.view(1, batch * in_channel, height, width)
|
269 |
+
out = F.conv2d(input, weight, padding=self.padding, groups=batch)
|
270 |
+
_, _, height, width = out.shape
|
271 |
+
out = out.view(batch, self.out_channel, height, width)
|
272 |
+
|
273 |
+
return out
|
274 |
+
|
275 |
+
|
276 |
+
class NoiseInjection(nn.Module):
|
277 |
+
def __init__(self):
|
278 |
+
super().__init__()
|
279 |
+
|
280 |
+
self.weight = nn.Parameter(torch.zeros(1))
|
281 |
+
|
282 |
+
def forward(self, image, noise=None):
|
283 |
+
|
284 |
+
if noise is None:
|
285 |
+
return image
|
286 |
+
else:
|
287 |
+
return image + self.weight * noise
|
288 |
+
|
289 |
+
|
290 |
+
class ConstantInput(nn.Module):
|
291 |
+
def __init__(self, channel, size=4):
|
292 |
+
super().__init__()
|
293 |
+
|
294 |
+
self.input = nn.Parameter(torch.randn(1, channel, size, size))
|
295 |
+
|
296 |
+
def forward(self, input):
|
297 |
+
batch = input.shape[0]
|
298 |
+
out = self.input.repeat(batch, 1, 1, 1)
|
299 |
+
|
300 |
+
return out
|
301 |
+
|
302 |
+
|
303 |
+
class StyledConv(nn.Module):
|
304 |
+
def __init__(self, in_channel, out_channel, kernel_size, style_dim, upsample=False, blur_kernel=[1, 3, 3, 1],
|
305 |
+
demodulate=True):
|
306 |
+
super().__init__()
|
307 |
+
|
308 |
+
self.conv = ModulatedConv2d(
|
309 |
+
in_channel,
|
310 |
+
out_channel,
|
311 |
+
kernel_size,
|
312 |
+
style_dim,
|
313 |
+
upsample=upsample,
|
314 |
+
blur_kernel=blur_kernel,
|
315 |
+
demodulate=demodulate,
|
316 |
+
)
|
317 |
+
|
318 |
+
self.noise = NoiseInjection()
|
319 |
+
self.activate = FusedLeakyReLU(out_channel)
|
320 |
+
|
321 |
+
def forward(self, input, style, noise=None):
|
322 |
+
out = self.conv(input, style)
|
323 |
+
out = self.noise(out, noise=noise)
|
324 |
+
out = self.activate(out)
|
325 |
+
|
326 |
+
return out
|
327 |
+
|
328 |
+
|
329 |
+
class ConvLayer(nn.Sequential):
|
330 |
+
def __init__(
|
331 |
+
self,
|
332 |
+
in_channel,
|
333 |
+
out_channel,
|
334 |
+
kernel_size,
|
335 |
+
downsample=False,
|
336 |
+
blur_kernel=[1, 3, 3, 1],
|
337 |
+
bias=True,
|
338 |
+
activate=True,
|
339 |
+
):
|
340 |
+
layers = []
|
341 |
+
|
342 |
+
if downsample:
|
343 |
+
factor = 2
|
344 |
+
p = (len(blur_kernel) - factor) + (kernel_size - 1)
|
345 |
+
pad0 = (p + 1) // 2
|
346 |
+
pad1 = p // 2
|
347 |
+
|
348 |
+
layers.append(Blur(blur_kernel, pad=(pad0, pad1)))
|
349 |
+
|
350 |
+
stride = 2
|
351 |
+
self.padding = 0
|
352 |
+
|
353 |
+
else:
|
354 |
+
stride = 1
|
355 |
+
self.padding = kernel_size // 2
|
356 |
+
|
357 |
+
layers.append(EqualConv2d(in_channel, out_channel, kernel_size, padding=self.padding, stride=stride,
|
358 |
+
bias=bias and not activate))
|
359 |
+
|
360 |
+
if activate:
|
361 |
+
if bias:
|
362 |
+
layers.append(FusedLeakyReLU(out_channel))
|
363 |
+
else:
|
364 |
+
layers.append(ScaledLeakyReLU(0.2))
|
365 |
+
|
366 |
+
super().__init__(*layers)
|
367 |
+
|
368 |
+
|
369 |
+
class ToRGB(nn.Module):
|
370 |
+
def __init__(self, in_channel, style_dim, upsample=True, blur_kernel=[1, 3, 3, 1]):
|
371 |
+
super().__init__()
|
372 |
+
|
373 |
+
if upsample:
|
374 |
+
self.upsample = Upsample(blur_kernel)
|
375 |
+
|
376 |
+
self.conv = ConvLayer(in_channel, 3, 1)
|
377 |
+
self.bias = nn.Parameter(torch.zeros(1, 3, 1, 1))
|
378 |
+
|
379 |
+
def forward(self, input, skip=None):
|
380 |
+
out = self.conv(input)
|
381 |
+
out = out + self.bias
|
382 |
+
|
383 |
+
if skip is not None:
|
384 |
+
skip = self.upsample(skip)
|
385 |
+
out = out + skip
|
386 |
+
|
387 |
+
return out
|
388 |
+
|
389 |
+
|
390 |
+
class ToFlow(nn.Module):
|
391 |
+
def __init__(self, in_channel, style_dim, upsample=True, blur_kernel=[1, 3, 3, 1]):
|
392 |
+
super().__init__()
|
393 |
+
|
394 |
+
if upsample:
|
395 |
+
self.upsample = Upsample(blur_kernel)
|
396 |
+
|
397 |
+
self.style_dim = style_dim
|
398 |
+
self.in_channel = in_channel
|
399 |
+
self.conv = ModulatedConv2d(in_channel, 3, 1, style_dim, demodulate=False)
|
400 |
+
self.bias = nn.Parameter(torch.zeros(1, 3, 1, 1))
|
401 |
+
|
402 |
+
def forward(self, input, style, feat, skip=None): # input 是来自上一层的 feature, style 是 512 的 condition, feat 是来自于 unet 的跳层
|
403 |
+
out = self.conv(input, style)
|
404 |
+
out = out + self.bias
|
405 |
+
|
406 |
+
# warping
|
407 |
+
xs = np.linspace(-1, 1, input.size(2))
|
408 |
+
|
409 |
+
xs = np.meshgrid(xs, xs)
|
410 |
+
xs = np.stack(xs, 2)
|
411 |
+
|
412 |
+
xs = torch.tensor(xs, requires_grad=False).float().unsqueeze(0).repeat(input.size(0), 1, 1, 1).to(input.device)
|
413 |
+
# import pdb;pdb.set_trace()
|
414 |
+
if skip is not None:
|
415 |
+
skip = self.upsample(skip)
|
416 |
+
out = out + skip
|
417 |
+
|
418 |
+
sampler = torch.tanh(out[:, 0:2, :, :])
|
419 |
+
mask = torch.sigmoid(out[:, 2:3, :, :])
|
420 |
+
flow = sampler.permute(0, 2, 3, 1) + xs # xs在这里相当于一个 location 的位置
|
421 |
+
|
422 |
+
feat_warp = F.grid_sample(feat, flow) * mask
|
423 |
+
# import pdb;pdb.set_trace()
|
424 |
+
return feat_warp, feat_warp + input * (1.0 - mask), out
|
425 |
+
|
426 |
+
|
427 |
+
class Direction(nn.Module):
|
428 |
+
def __init__(self, motion_dim):
|
429 |
+
super(Direction, self).__init__()
|
430 |
+
|
431 |
+
self.weight = nn.Parameter(torch.randn(512, motion_dim))
|
432 |
+
|
433 |
+
def forward(self, input):
|
434 |
+
# input: (bs*t) x 512
|
435 |
+
|
436 |
+
weight = self.weight + 1e-8
|
437 |
+
Q, R = torch.qr(weight) # get eignvector, orthogonal [n1, n2, n3, n4]
|
438 |
+
|
439 |
+
if input is None:
|
440 |
+
return Q
|
441 |
+
else:
|
442 |
+
input_diag = torch.diag_embed(input) # alpha, diagonal matrix
|
443 |
+
out = torch.matmul(input_diag, Q.T)
|
444 |
+
out = torch.sum(out, dim=1)
|
445 |
+
|
446 |
+
return out
|
447 |
+
|
448 |
+
class Synthesis(nn.Module):
|
449 |
+
def __init__(self, size, style_dim, motion_dim, blur_kernel=[1, 3, 3, 1], channel_multiplier=1):
|
450 |
+
super(Synthesis, self).__init__()
|
451 |
+
|
452 |
+
self.size = size
|
453 |
+
self.style_dim = style_dim
|
454 |
+
self.motion_dim = motion_dim
|
455 |
+
|
456 |
+
self.direction = Direction(motion_dim) # Linear Motion Decomposition (LMD) from LIA
|
457 |
+
|
458 |
+
self.channels = {
|
459 |
+
4: 512,
|
460 |
+
8: 512,
|
461 |
+
16: 512,
|
462 |
+
32: 512,
|
463 |
+
64: 256 * channel_multiplier,
|
464 |
+
128: 128 * channel_multiplier,
|
465 |
+
256: 64 * channel_multiplier,
|
466 |
+
512: 32 * channel_multiplier,
|
467 |
+
1024: 16 * channel_multiplier,
|
468 |
+
}
|
469 |
+
|
470 |
+
self.input = ConstantInput(self.channels[4])
|
471 |
+
self.conv1 = StyledConv(self.channels[4], self.channels[4], 3, style_dim, blur_kernel=blur_kernel)
|
472 |
+
self.to_rgb1 = ToRGB(self.channels[4], style_dim, upsample=False)
|
473 |
+
|
474 |
+
self.log_size = int(math.log(size, 2))
|
475 |
+
self.num_layers = (self.log_size - 2) * 2 + 1
|
476 |
+
|
477 |
+
self.convs = nn.ModuleList()
|
478 |
+
self.upsamples = nn.ModuleList()
|
479 |
+
self.to_rgbs = nn.ModuleList()
|
480 |
+
self.to_flows = nn.ModuleList()
|
481 |
+
|
482 |
+
in_channel = self.channels[4]
|
483 |
+
|
484 |
+
for i in range(3, self.log_size + 1):
|
485 |
+
out_channel = self.channels[2 ** i]
|
486 |
+
|
487 |
+
self.convs.append(StyledConv(in_channel, out_channel, 3, style_dim, upsample=True,
|
488 |
+
blur_kernel=blur_kernel))
|
489 |
+
self.convs.append(StyledConv(out_channel, out_channel, 3, style_dim, blur_kernel=blur_kernel))
|
490 |
+
self.to_rgbs.append(ToRGB(out_channel, style_dim))
|
491 |
+
|
492 |
+
self.to_flows.append(ToFlow(out_channel, style_dim))
|
493 |
+
|
494 |
+
in_channel = out_channel
|
495 |
+
|
496 |
+
self.n_latent = self.log_size * 2 - 2
|
497 |
+
|
498 |
+
def forward(self, source_before_decoupling, target_motion, feats):
|
499 |
+
|
500 |
+
directions = self.direction(target_motion)
|
501 |
+
latent = source_before_decoupling + directions # wa + directions
|
502 |
+
|
503 |
+
inject_index = self.n_latent
|
504 |
+
latent = latent.unsqueeze(1).repeat(1, inject_index, 1)
|
505 |
+
|
506 |
+
out = self.input(latent)
|
507 |
+
out = self.conv1(out, latent[:, 0])
|
508 |
+
|
509 |
+
i = 1
|
510 |
+
for conv1, conv2, to_rgb, to_flow, feat in zip(self.convs[::2], self.convs[1::2], self.to_rgbs,
|
511 |
+
self.to_flows, feats):
|
512 |
+
out = conv1(out, latent[:, i])
|
513 |
+
out = conv2(out, latent[:, i + 1])
|
514 |
+
if out.size(2) == 8:
|
515 |
+
out_warp, out, skip_flow = to_flow(out, latent[:, i + 2], feat)
|
516 |
+
skip = to_rgb(out_warp)
|
517 |
+
else:
|
518 |
+
out_warp, out, skip_flow = to_flow(out, latent[:, i + 2], feat, skip_flow)
|
519 |
+
skip = to_rgb(out_warp, skip)
|
520 |
+
i += 2
|
521 |
+
|
522 |
+
img = skip
|
523 |
+
|
524 |
+
return img
|
525 |
+
|
526 |
+
|
527 |
+
|
networks/utils.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from torch import nn
|
2 |
+
import torch.nn.functional as F
|
3 |
+
import torch
|
4 |
+
|
5 |
+
|
6 |
+
class AntiAliasInterpolation2d(nn.Module):
|
7 |
+
"""
|
8 |
+
Band-limited downsampling, for better preservation of the input signal.
|
9 |
+
"""
|
10 |
+
|
11 |
+
def __init__(self, channels, scale):
|
12 |
+
super(AntiAliasInterpolation2d, self).__init__()
|
13 |
+
sigma = (1 / scale - 1) / 2
|
14 |
+
kernel_size = 2 * round(sigma * 4) + 1
|
15 |
+
self.ka = kernel_size // 2
|
16 |
+
self.kb = self.ka - 1 if kernel_size % 2 == 0 else self.ka
|
17 |
+
|
18 |
+
kernel_size = [kernel_size, kernel_size]
|
19 |
+
sigma = [sigma, sigma]
|
20 |
+
# The gaussian kernel is the product of the
|
21 |
+
# gaussian function of each dimension.
|
22 |
+
kernel = 1
|
23 |
+
meshgrids = torch.meshgrid(
|
24 |
+
[
|
25 |
+
torch.arange(size, dtype=torch.float32)
|
26 |
+
for size in kernel_size
|
27 |
+
]
|
28 |
+
)
|
29 |
+
for size, std, mgrid in zip(kernel_size, sigma, meshgrids):
|
30 |
+
mean = (size - 1) / 2
|
31 |
+
kernel *= torch.exp(-(mgrid - mean) ** 2 / (2 * std ** 2))
|
32 |
+
|
33 |
+
# Make sure sum of values in gaussian kernel equals 1.
|
34 |
+
kernel = kernel / torch.sum(kernel)
|
35 |
+
# Reshape to depthwise convolutional weight
|
36 |
+
kernel = kernel.view(1, 1, *kernel.size())
|
37 |
+
kernel = kernel.repeat(channels, *[1] * (kernel.dim() - 1))
|
38 |
+
|
39 |
+
self.register_buffer('weight', kernel)
|
40 |
+
self.groups = channels
|
41 |
+
self.scale = scale
|
42 |
+
inv_scale = 1 / scale
|
43 |
+
self.int_inv_scale = int(inv_scale)
|
44 |
+
|
45 |
+
def forward(self, input):
|
46 |
+
if self.scale == 1.0:
|
47 |
+
return input
|
48 |
+
|
49 |
+
out = F.pad(input, (self.ka, self.kb, self.ka, self.kb))
|
50 |
+
out = F.conv2d(out, weight=self.weight, groups=self.groups)
|
51 |
+
out = out[:, :, ::self.int_inv_scale, ::self.int_inv_scale]
|
52 |
+
|
53 |
+
return out
|
renderer.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from config import *
|
2 |
+
|
3 |
+
def render_condition(
|
4 |
+
conf: TrainConfig,
|
5 |
+
model,
|
6 |
+
sampler, start, motion_direction_start, audio_driven, \
|
7 |
+
face_location, face_scale, \
|
8 |
+
yaw_pitch_roll, noisyT, control_flag,
|
9 |
+
):
|
10 |
+
if conf.train_mode == TrainMode.diffusion:
|
11 |
+
assert conf.model_type.has_autoenc()
|
12 |
+
|
13 |
+
return sampler.sample(model=model,
|
14 |
+
noise=noisyT,
|
15 |
+
model_kwargs={
|
16 |
+
'motion_direction_start': motion_direction_start,
|
17 |
+
'yaw_pitch_roll': yaw_pitch_roll,
|
18 |
+
'start': start,
|
19 |
+
'audio_driven': audio_driven,
|
20 |
+
'face_location': face_location,
|
21 |
+
'face_scale': face_scale,
|
22 |
+
'control_flag': control_flag
|
23 |
+
})
|
24 |
+
else:
|
25 |
+
raise NotImplementedError()
|
templates.py
ADDED
@@ -0,0 +1,301 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from experiment import *
|
2 |
+
|
3 |
+
|
4 |
+
def ddpm():
|
5 |
+
"""
|
6 |
+
base configuration for all DDIM-based models.
|
7 |
+
"""
|
8 |
+
conf = TrainConfig()
|
9 |
+
conf.batch_size = 32
|
10 |
+
conf.beatgans_gen_type = GenerativeType.ddim
|
11 |
+
conf.beta_scheduler = 'linear'
|
12 |
+
conf.data_name = 'ffhq'
|
13 |
+
conf.diffusion_type = 'beatgans'
|
14 |
+
conf.eval_ema_every_samples = 200_000
|
15 |
+
conf.eval_every_samples = 200_000
|
16 |
+
conf.fp16 = True
|
17 |
+
conf.lr = 1e-4
|
18 |
+
conf.model_name = ModelName.beatgans_ddpm
|
19 |
+
conf.net_attn = (16, )
|
20 |
+
conf.net_beatgans_attn_head = 1
|
21 |
+
conf.net_beatgans_embed_channels = 512
|
22 |
+
conf.net_ch_mult = (1, 2, 4, 8)
|
23 |
+
conf.net_ch = 64
|
24 |
+
conf.sample_size = 32
|
25 |
+
conf.T_eval = 20
|
26 |
+
conf.T = 1000
|
27 |
+
conf.make_model_conf()
|
28 |
+
return conf
|
29 |
+
|
30 |
+
|
31 |
+
def autoenc_base():
|
32 |
+
"""
|
33 |
+
base configuration for all Diff-AE models.
|
34 |
+
"""
|
35 |
+
conf = TrainConfig()
|
36 |
+
conf.batch_size = 32
|
37 |
+
conf.beatgans_gen_type = GenerativeType.ddim
|
38 |
+
conf.beta_scheduler = 'linear'
|
39 |
+
conf.data_name = 'ffhq'
|
40 |
+
conf.diffusion_type = 'beatgans'
|
41 |
+
conf.eval_ema_every_samples = 200_000
|
42 |
+
conf.eval_every_samples = 200_000
|
43 |
+
conf.fp16 = True
|
44 |
+
conf.lr = 1e-4
|
45 |
+
conf.model_name = ModelName.beatgans_autoenc
|
46 |
+
conf.net_attn = (16, )
|
47 |
+
conf.net_beatgans_attn_head = 1
|
48 |
+
conf.net_beatgans_embed_channels = 512
|
49 |
+
conf.net_beatgans_resnet_two_cond = True
|
50 |
+
conf.net_ch_mult = (1, 2, 4, 8)
|
51 |
+
conf.net_ch = 64
|
52 |
+
conf.net_enc_channel_mult = (1, 2, 4, 8, 8)
|
53 |
+
conf.net_enc_pool = 'adaptivenonzero'
|
54 |
+
conf.sample_size = 32
|
55 |
+
conf.T_eval = 20
|
56 |
+
conf.T = 1000
|
57 |
+
conf.make_model_conf()
|
58 |
+
return conf
|
59 |
+
|
60 |
+
|
61 |
+
def ffhq64_ddpm():
|
62 |
+
conf = ddpm()
|
63 |
+
conf.data_name = 'ffhqlmdb256'
|
64 |
+
conf.warmup = 0
|
65 |
+
conf.total_samples = 72_000_000
|
66 |
+
conf.scale_up_gpus(4)
|
67 |
+
return conf
|
68 |
+
|
69 |
+
|
70 |
+
def ffhq64_autoenc():
|
71 |
+
conf = autoenc_base()
|
72 |
+
conf.data_name = 'ffhqlmdb256'
|
73 |
+
conf.warmup = 0
|
74 |
+
conf.total_samples = 72_000_000
|
75 |
+
conf.net_ch_mult = (1, 2, 4, 8)
|
76 |
+
conf.net_enc_channel_mult = (1, 2, 4, 8, 8)
|
77 |
+
conf.eval_every_samples = 1_000_000
|
78 |
+
conf.eval_ema_every_samples = 1_000_000
|
79 |
+
conf.scale_up_gpus(4)
|
80 |
+
conf.make_model_conf()
|
81 |
+
return conf
|
82 |
+
|
83 |
+
|
84 |
+
def celeba64d2c_ddpm():
|
85 |
+
conf = ffhq128_ddpm()
|
86 |
+
conf.data_name = 'celebalmdb'
|
87 |
+
conf.eval_every_samples = 10_000_000
|
88 |
+
conf.eval_ema_every_samples = 10_000_000
|
89 |
+
conf.total_samples = 72_000_000
|
90 |
+
conf.name = 'celeba64d2c_ddpm'
|
91 |
+
return conf
|
92 |
+
|
93 |
+
|
94 |
+
def celeba64d2c_autoenc():
|
95 |
+
conf = ffhq64_autoenc()
|
96 |
+
conf.data_name = 'celebalmdb'
|
97 |
+
conf.eval_every_samples = 10_000_000
|
98 |
+
conf.eval_ema_every_samples = 10_000_000
|
99 |
+
conf.total_samples = 72_000_000
|
100 |
+
conf.name = 'celeba64d2c_autoenc'
|
101 |
+
return conf
|
102 |
+
|
103 |
+
|
104 |
+
def ffhq128_ddpm():
|
105 |
+
conf = ddpm()
|
106 |
+
conf.data_name = 'ffhqlmdb256'
|
107 |
+
conf.warmup = 0
|
108 |
+
conf.total_samples = 48_000_000
|
109 |
+
conf.img_size = 128
|
110 |
+
conf.net_ch = 128
|
111 |
+
# channels:
|
112 |
+
# 3 => 128 * 1 => 128 * 1 => 128 * 2 => 128 * 3 => 128 * 4
|
113 |
+
# sizes:
|
114 |
+
# 128 => 128 => 64 => 32 => 16 => 8
|
115 |
+
conf.net_ch_mult = (1, 1, 2, 3, 4)
|
116 |
+
conf.eval_every_samples = 1_000_000
|
117 |
+
conf.eval_ema_every_samples = 1_000_000
|
118 |
+
conf.scale_up_gpus(4)
|
119 |
+
conf.eval_ema_every_samples = 10_000_000
|
120 |
+
conf.eval_every_samples = 10_000_000
|
121 |
+
conf.make_model_conf()
|
122 |
+
return conf
|
123 |
+
|
124 |
+
|
125 |
+
def ffhq128_autoenc_base():
|
126 |
+
conf = autoenc_base()
|
127 |
+
conf.data_name = 'ffhqlmdb256'
|
128 |
+
conf.scale_up_gpus(4)
|
129 |
+
conf.img_size = 128
|
130 |
+
conf.net_ch = 128
|
131 |
+
# final resolution = 8x8
|
132 |
+
conf.net_ch_mult = (1, 1, 2, 3, 4)
|
133 |
+
# final resolution = 4x4
|
134 |
+
conf.net_enc_channel_mult = (1, 1, 2, 3, 4, 4)
|
135 |
+
conf.eval_ema_every_samples = 10_000_000
|
136 |
+
conf.eval_every_samples = 10_000_000
|
137 |
+
conf.make_model_conf()
|
138 |
+
return conf
|
139 |
+
|
140 |
+
|
141 |
+
def ffhq256_autoenc():
|
142 |
+
conf = ffhq128_autoenc_base()
|
143 |
+
conf.img_size = 256
|
144 |
+
conf.net_ch = 128
|
145 |
+
conf.net_ch_mult = (1, 1, 2, 2, 4, 4)
|
146 |
+
conf.net_enc_channel_mult = (1, 1, 2, 2, 4, 4, 4)
|
147 |
+
conf.eval_every_samples = 10_000_000
|
148 |
+
conf.eval_ema_every_samples = 10_000_000
|
149 |
+
conf.total_samples = 200_000_000
|
150 |
+
conf.batch_size = 64
|
151 |
+
conf.make_model_conf()
|
152 |
+
conf.name = 'ffhq256_autoenc'
|
153 |
+
return conf
|
154 |
+
|
155 |
+
|
156 |
+
def ffhq256_autoenc_eco():
|
157 |
+
conf = ffhq128_autoenc_base()
|
158 |
+
conf.img_size = 256
|
159 |
+
conf.net_ch = 128
|
160 |
+
conf.net_ch_mult = (1, 1, 2, 2, 4, 4)
|
161 |
+
conf.net_enc_channel_mult = (1, 1, 2, 2, 4, 4, 4)
|
162 |
+
conf.eval_every_samples = 10_000_000
|
163 |
+
conf.eval_ema_every_samples = 10_000_000
|
164 |
+
conf.total_samples = 200_000_000
|
165 |
+
conf.batch_size = 64
|
166 |
+
conf.make_model_conf()
|
167 |
+
conf.name = 'ffhq256_autoenc_eco'
|
168 |
+
return conf
|
169 |
+
|
170 |
+
|
171 |
+
def ffhq128_ddpm_72M():
|
172 |
+
conf = ffhq128_ddpm()
|
173 |
+
conf.total_samples = 72_000_000
|
174 |
+
conf.name = 'ffhq128_ddpm_72M'
|
175 |
+
return conf
|
176 |
+
|
177 |
+
|
178 |
+
def ffhq128_autoenc_72M():
|
179 |
+
conf = ffhq128_autoenc_base()
|
180 |
+
conf.total_samples = 72_000_000
|
181 |
+
conf.name = 'ffhq128_autoenc_72M'
|
182 |
+
return conf
|
183 |
+
|
184 |
+
|
185 |
+
def ffhq128_ddpm_130M():
|
186 |
+
conf = ffhq128_ddpm()
|
187 |
+
conf.total_samples = 130_000_000
|
188 |
+
conf.eval_ema_every_samples = 10_000_000
|
189 |
+
conf.eval_every_samples = 10_000_000
|
190 |
+
conf.name = 'ffhq128_ddpm_130M'
|
191 |
+
return conf
|
192 |
+
|
193 |
+
|
194 |
+
def ffhq128_autoenc_130M():
|
195 |
+
conf = ffhq128_autoenc_base()
|
196 |
+
conf.total_samples = 130_000_000
|
197 |
+
conf.eval_ema_every_samples = 10_000_000
|
198 |
+
conf.eval_every_samples = 10_000_000
|
199 |
+
conf.name = 'ffhq128_autoenc_130M'
|
200 |
+
return conf
|
201 |
+
|
202 |
+
|
203 |
+
def horse128_ddpm():
|
204 |
+
conf = ffhq128_ddpm()
|
205 |
+
conf.data_name = 'horse256'
|
206 |
+
conf.total_samples = 130_000_000
|
207 |
+
conf.eval_ema_every_samples = 10_000_000
|
208 |
+
conf.eval_every_samples = 10_000_000
|
209 |
+
conf.name = 'horse128_ddpm'
|
210 |
+
return conf
|
211 |
+
|
212 |
+
|
213 |
+
def horse128_autoenc():
|
214 |
+
conf = ffhq128_autoenc_base()
|
215 |
+
conf.data_name = 'horse256'
|
216 |
+
conf.total_samples = 130_000_000
|
217 |
+
conf.eval_ema_every_samples = 10_000_000
|
218 |
+
conf.eval_every_samples = 10_000_000
|
219 |
+
conf.name = 'horse128_autoenc'
|
220 |
+
return conf
|
221 |
+
|
222 |
+
|
223 |
+
def bedroom128_ddpm():
|
224 |
+
conf = ffhq128_ddpm()
|
225 |
+
conf.data_name = 'bedroom256'
|
226 |
+
conf.eval_ema_every_samples = 10_000_000
|
227 |
+
conf.eval_every_samples = 10_000_000
|
228 |
+
conf.total_samples = 120_000_000
|
229 |
+
conf.name = 'bedroom128_ddpm'
|
230 |
+
return conf
|
231 |
+
|
232 |
+
|
233 |
+
def bedroom128_autoenc():
|
234 |
+
conf = ffhq128_autoenc_base()
|
235 |
+
conf.data_name = 'bedroom256'
|
236 |
+
conf.eval_ema_every_samples = 10_000_000
|
237 |
+
conf.eval_every_samples = 10_000_000
|
238 |
+
conf.total_samples = 120_000_000
|
239 |
+
conf.name = 'bedroom128_autoenc'
|
240 |
+
return conf
|
241 |
+
|
242 |
+
|
243 |
+
def pretrain_celeba64d2c_72M():
|
244 |
+
conf = celeba64d2c_autoenc()
|
245 |
+
conf.pretrain = PretrainConfig(
|
246 |
+
name='72M',
|
247 |
+
path=f'checkpoints/{celeba64d2c_autoenc().name}/last.ckpt',
|
248 |
+
)
|
249 |
+
conf.latent_infer_path = f'checkpoints/{celeba64d2c_autoenc().name}/latent.pkl'
|
250 |
+
return conf
|
251 |
+
|
252 |
+
|
253 |
+
def pretrain_ffhq128_autoenc72M():
|
254 |
+
conf = ffhq128_autoenc_base()
|
255 |
+
conf.postfix = ''
|
256 |
+
conf.pretrain = PretrainConfig(
|
257 |
+
name='72M',
|
258 |
+
path=f'checkpoints/{ffhq128_autoenc_72M().name}/last.ckpt',
|
259 |
+
)
|
260 |
+
conf.latent_infer_path = f'checkpoints/{ffhq128_autoenc_72M().name}/latent.pkl'
|
261 |
+
return conf
|
262 |
+
|
263 |
+
|
264 |
+
def pretrain_ffhq128_autoenc130M():
|
265 |
+
conf = ffhq128_autoenc_base()
|
266 |
+
conf.pretrain = PretrainConfig(
|
267 |
+
name='130M',
|
268 |
+
path=f'checkpoints/{ffhq128_autoenc_130M().name}/last.ckpt',
|
269 |
+
)
|
270 |
+
conf.latent_infer_path = f'checkpoints/{ffhq128_autoenc_130M().name}/latent.pkl'
|
271 |
+
return conf
|
272 |
+
|
273 |
+
|
274 |
+
def pretrain_ffhq256_autoenc():
|
275 |
+
conf = ffhq256_autoenc()
|
276 |
+
conf.pretrain = PretrainConfig(
|
277 |
+
name='90M',
|
278 |
+
path=f'checkpoints/{ffhq256_autoenc().name}/last.ckpt',
|
279 |
+
)
|
280 |
+
conf.latent_infer_path = f'checkpoints/{ffhq256_autoenc().name}/latent.pkl'
|
281 |
+
return conf
|
282 |
+
|
283 |
+
|
284 |
+
def pretrain_horse128():
|
285 |
+
conf = horse128_autoenc()
|
286 |
+
conf.pretrain = PretrainConfig(
|
287 |
+
name='82M',
|
288 |
+
path=f'checkpoints/{horse128_autoenc().name}/last.ckpt',
|
289 |
+
)
|
290 |
+
conf.latent_infer_path = f'checkpoints/{horse128_autoenc().name}/latent.pkl'
|
291 |
+
return conf
|
292 |
+
|
293 |
+
|
294 |
+
def pretrain_bedroom128():
|
295 |
+
conf = bedroom128_autoenc()
|
296 |
+
conf.pretrain = PretrainConfig(
|
297 |
+
name='120M',
|
298 |
+
path=f'checkpoints/{bedroom128_autoenc().name}/last.ckpt',
|
299 |
+
)
|
300 |
+
conf.latent_infer_path = f'checkpoints/{bedroom128_autoenc().name}/latent.pkl'
|
301 |
+
return conf
|