|
from utils import get_som_labeled_img, check_ocr_box, get_caption_model_processor, get_dino_model, get_yolo_model
|
|
import torch
|
|
from ultralytics import YOLO
|
|
from PIL import Image
|
|
from typing import Dict, Tuple, List
|
|
import io
|
|
import base64
|
|
|
|
|
|
config = {
|
|
'som_model_path': 'finetuned_icon_detect.pt',
|
|
'device': 'cpu',
|
|
'caption_model_path': 'Salesforce/blip2-opt-2.7b',
|
|
'draw_bbox_config': {
|
|
'text_scale': 0.8,
|
|
'text_thickness': 2,
|
|
'text_padding': 3,
|
|
'thickness': 3,
|
|
},
|
|
'BOX_TRESHOLD': 0.05
|
|
}
|
|
|
|
|
|
class Omniparser(object):
|
|
def __init__(self, config: Dict):
|
|
self.config = config
|
|
|
|
self.som_model = get_yolo_model(model_path=config['som_model_path'])
|
|
|
|
|
|
|
|
def parse(self, image_path: str):
|
|
print('Parsing image:', image_path)
|
|
ocr_bbox_rslt, is_goal_filtered = check_ocr_box(image_path, display_img = False, output_bb_format='xyxy', goal_filtering=None, easyocr_args={'paragraph': False, 'text_threshold':0.9})
|
|
text, ocr_bbox = ocr_bbox_rslt
|
|
|
|
draw_bbox_config = self.config['draw_bbox_config']
|
|
BOX_TRESHOLD = self.config['BOX_TRESHOLD']
|
|
dino_labled_img, label_coordinates, parsed_content_list = get_som_labeled_img(image_path, self.som_model, BOX_TRESHOLD = BOX_TRESHOLD, output_coord_in_ratio=False, ocr_bbox=ocr_bbox,draw_bbox_config=draw_bbox_config, caption_model_processor=None, ocr_text=text,use_local_semantics=False)
|
|
|
|
image = Image.open(io.BytesIO(base64.b64decode(dino_labled_img)))
|
|
|
|
return_list = [{'from': 'omniparser', 'shape': {'x':coord[0], 'y':coord[1], 'width':coord[2], 'height':coord[3]},
|
|
'text': parsed_content_list[i].split(': ')[1], 'type':'text'} for i, (k, coord) in enumerate(label_coordinates.items()) if i < len(parsed_content_list)]
|
|
return_list.extend(
|
|
[{'from': 'omniparser', 'shape': {'x':coord[0], 'y':coord[1], 'width':coord[2], 'height':coord[3]},
|
|
'text': 'None', 'type':'icon'} for i, (k, coord) in enumerate(label_coordinates.items()) if i >= len(parsed_content_list)]
|
|
)
|
|
|
|
return [image, return_list]
|
|
|
|
parser = Omniparser(config)
|
|
image_path = 'examples/pc_1.png'
|
|
|
|
|
|
import time
|
|
s = time.time()
|
|
image, parsed_content_list = parser.parse(image_path)
|
|
device = config['device']
|
|
print(f'Time taken for Omniparser on {device}:', time.time() - s)
|
|
|