Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import logging
|
3 |
+
import os
|
4 |
+
import json
|
5 |
+
from PIL import Image, ImageDraw
|
6 |
+
import torch
|
7 |
+
from surya.ocr import run_ocr
|
8 |
+
from surya.detection import batch_text_detection
|
9 |
+
from surya.layout import batch_layout_detection
|
10 |
+
from surya.ordering import batch_ordering
|
11 |
+
from surya.model.detection.model import load_model as load_det_model, load_processor as load_det_processor
|
12 |
+
from surya.model.recognition.model import load_model as load_rec_model
|
13 |
+
from surya.model.recognition.processor import load_processor as load_rec_processor
|
14 |
+
from surya.settings import settings
|
15 |
+
|
16 |
+
# Configuração de logging
|
17 |
+
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')
|
18 |
+
logger = logging.getLogger(__name__)
|
19 |
+
|
20 |
+
# Carregamento de modelos
|
21 |
+
det_processor, det_model = load_det_processor(), load_det_model()
|
22 |
+
rec_model, rec_processor = load_rec_model(), load_rec_processor()
|
23 |
+
|
24 |
+
class CustomJSONEncoder(json.JSONEncoder):
|
25 |
+
def default(self, obj):
|
26 |
+
if isinstance(obj, Image.Image):
|
27 |
+
return "Image object (not serializable)"
|
28 |
+
return str(obj)
|
29 |
+
|
30 |
+
def serialize_result(result):
|
31 |
+
return json.dumps(result, cls=CustomJSONEncoder, indent=2)
|
32 |
+
|
33 |
+
def save_metadata(results):
|
34 |
+
output_file = "/mnt/data/ocr_metadata.json" # Caminho de armazenamento persistente
|
35 |
+
with open(output_file, "w") as f:
|
36 |
+
json.dump(results, f, cls=CustomJSONEncoder, indent=2)
|
37 |
+
return output_file
|
38 |
+
|
39 |
+
def ocr_workflow(images, langs):
|
40 |
+
logger.info(f"Iniciando workflow OCR para {len(images)} imagens com idiomas: {langs}")
|
41 |
+
results = []
|
42 |
+
for image_file in images:
|
43 |
+
try:
|
44 |
+
image = Image.open(image_file.name)
|
45 |
+
predictions = run_ocr([image], [langs.split(',')], det_model, det_processor, rec_model, rec_processor)
|
46 |
+
formatted_text = "\n".join([line.text for line in predictions[0].text_lines])
|
47 |
+
results.append({
|
48 |
+
"image": image_file.name,
|
49 |
+
"text": formatted_text,
|
50 |
+
"predictions": predictions[0].text_lines # Assuming text_lines is serializable
|
51 |
+
})
|
52 |
+
except Exception as e:
|
53 |
+
logger.error(f"Erro com {image_file.name}: {e}")
|
54 |
+
results.append({"image": image_file.name, "error": str(e)})
|
55 |
+
|
56 |
+
metadata_file = save_metadata(results)
|
57 |
+
return serialize_result(results), metadata_file
|
58 |
+
|
59 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
60 |
+
gr.Markdown("# Análise de Documentos com Surya")
|
61 |
+
|
62 |
+
with gr.Tab("OCR"):
|
63 |
+
gr.Markdown("## Reconhecimento Óptico de Caracteres para Múltiplas Imagens")
|
64 |
+
with gr.Row():
|
65 |
+
ocr_input = gr.Files(label="Carregar Imagens ou PDFs (até 100)")
|
66 |
+
ocr_langs = gr.Textbox(label="Idiomas (separados por vírgula)", value="en")
|
67 |
+
ocr_button = gr.Button("Executar OCR")
|
68 |
+
ocr_output = gr.JSON(label="Resultados OCR")
|
69 |
+
ocr_file = gr.File(label="Baixar Metadata OCR")
|
70 |
+
|
71 |
+
# Executa a função OCR e salva o arquivo de metadata para download
|
72 |
+
ocr_button.click(ocr_workflow, inputs=[ocr_input, ocr_langs], outputs=[ocr_output, ocr_file])
|
73 |
+
|
74 |
+
if __name__ == "__main__":
|
75 |
+
logger.info("Iniciando aplicativo Gradio...")
|
76 |
+
demo.launch()
|