rra_chatbot_v1 / app.py
Irakoze's picture
added first files
001bd50 verified
raw
history blame
16.6 kB
import os
import gradio as gr
import logging
import asyncio
from dotenv import load_dotenv
from langchain.prompts import PromptTemplate
from langchain_qdrant import QdrantVectorStore
from langchain.chains import RetrievalQA
from langchain_groq import ChatGroq
from qdrant_client.models import PointStruct, VectorParams, Distance
import uuid
from qdrant_client.http import models
from datetime import datetime
from langchain_community.embeddings.fastembed import FastEmbedEmbeddings
from qdrant_client import QdrantClient
import cohere
from langchain.retrievers import ContextualCompressionRetriever
from langchain_cohere import CohereRerank
import re
from translation_service import TranslationService
# Load environment variables
load_dotenv()
# Initialize logging with INFO level and detailed format
logging.basicConfig(
filename='app.log',
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s'
)
# Initialize services
translator = TranslationService()
def initialize_database_client():
"""Initialize Qdrant client"""
try:
client = QdrantClient(
url=os.getenv("QDURL"),
api_key=os.getenv("API_KEY1"),
verify=True # Set to True if using SSL
)
logging.info("Qdrant client initialized successfully.")
return client
except Exception as e:
logging.error(f"Failed to initialize Qdrant client: {e}")
raise
def initialize_llm():
"""Initialize LLM with fallback"""
try:
llm = ChatGroq(
temperature=0,
model_name="llama3-8b-8192",
api_key=os.getenv("GROQ_API_KEY")
)
logging.info("ChatGroq initialized with model llama3-8b-8192.")
return llm
except Exception as e:
logging.warning(f"Failed to initialize ChatGroq with llama3: {e}. Falling back to mixtral.")
try:
llm = ChatGroq(
temperature=0,
model_name="mixtral-8x7b-32768",
api_key=os.getenv("GROQ_API_KEY")
)
logging.info("ChatGroq initialized with fallback model mixtral-8x7b-32768.")
return llm
except Exception as fallback_e:
logging.error(f"Failed to initialize fallback LLM: {fallback_e}")
raise
def initialize_services():
"""Initialize all services"""
try:
# Initialize Qdrant client
client = initialize_database_client()
# Initialize embeddings
embeddings = FastEmbedEmbeddings(model_name="nomic-ai/nomic-embed-text-v1.5-Q")
logging.info("FastEmbedEmbeddings initialized successfully.")
# Initialize Qdrant DB
db = QdrantVectorStore(
client=client,
embedding=embeddings,
collection_name="RR3"
)
logging.info("QdrantVectorStore initialized with collection 'RR3'.")
# Initialize retriever with reranker
cohere_client = cohere.Client(api_key=os.getenv("COHERE_API_KEY"))
reranker = CohereRerank(
client=cohere_client,
top_n=3,
model="rerank-multilingual-v3.0"
)
base_retriever = db.as_retriever(search_kwargs={"k": 14})
retriever = ContextualCompressionRetriever(
base_compressor=reranker,
base_retriever=base_retriever
)
logging.info("Retriever with reranker initialized successfully.")
# Initialize LLM
llm = initialize_llm()
return retriever, llm
except Exception as e:
logging.error(f"Service initialization error: {str(e)}")
raise
def initialize_feedback_collection():
"""Initialize and verify feedback collection"""
try:
client = initialize_database_client()
# Check if collection exists
collections = client.get_collections().collections
collection_exists = any(c.name == "chat_feedback" for c in collections)
if not collection_exists:
# Create collection with proper configuration
client.create_collection(
collection_name="chat_feedback",
vectors_config=VectorParams(
size=768, # Ensure this matches the embedding size
distance=Distance.COSINE
)
)
logging.info("Created 'chat_feedback' collection with vector size 768 and Cosine distance.")
else:
logging.info("'chat_feedback' collection already exists.")
# Verify collection exists and has correct configuration
collection_info = client.get_collection("chat_feedback")
if collection_info.config.params.vectors.size != 768:
raise ValueError("Incorrect vector size in 'chat_feedback' collection.")
logging.info("'chat_feedback' collection verified successfully with correct vector size.")
return True
except Exception as e:
logging.error(f"Failed to initialize feedback collection: {e}")
raise
async def submit_feedback(feedback_type, chat_history, language_choice):
"""Submit feedback with improved error handling and logging."""
try:
if not chat_history or len(chat_history) < 2:
logging.warning("Attempted to submit feedback with insufficient chat history.")
return "No recent interaction to provide feedback for."
# Get last question and answer
last_interaction = chat_history[-2:]
question = last_interaction[0].get("content", "").strip()
answer = last_interaction[1].get("content", "").strip()
if not question or not answer:
logging.warning("Question or answer content is missing.")
return "Incomplete interaction data. Cannot submit feedback."
logging.info(f"Processing feedback for question: {question[:50]}...")
# Initialize client
client = initialize_database_client()
# Create point ID
point_id = str(uuid.uuid4())
# Create payload
payload = {
"question": question,
"answer": answer,
"language": language_choice,
"timestamp": datetime.utcnow().isoformat(),
"feedback": feedback_type
}
# Initialize embeddings
embeddings = FastEmbedEmbeddings(model_name="nomic-ai/nomic-embed-text-v1.5-Q")
# Create embeddings for the Q&A pair
try:
embedding_text = f"{question} {answer}"
vector = await asyncio.to_thread(embeddings.embed_query, embedding_text)
logging.info(f"Generated embedding vector of length {len(vector)}.")
except Exception as embed_error:
logging.error(f"Embedding generation failed: {embed_error}")
return "Failed to generate embeddings for your feedback."
if not isinstance(vector, list) or not vector:
logging.error("Invalid vector generated from embeddings.")
return "Failed to generate valid embeddings for your feedback."
# Create point
point = PointStruct(
id=point_id,
payload=payload,
vector=vector
)
# Store in Qdrant
try:
operation_info = await asyncio.to_thread(
client.upsert,
collection_name="chat_feedback",
points=[point]
)
logging.info(f"Feedback submitted successfully: {point_id}")
return "Thanks for your feedback! Your response has been recorded."
except Exception as db_error:
logging.error(f"Failed to upsert point to Qdrant: {db_error}")
return "Sorry, there was an error submitting your feedback."
except Exception as e:
logging.error(f"Unexpected error in submit_feedback: {e}")
return "Sorry, there was an unexpected error submitting your feedback."
# Initialize services and feedback collection
try:
retriever, llm = initialize_services()
initialize_feedback_collection()
except Exception as initialization_error:
logging.critical(f"Initialization failed: {initialization_error}")
raise
# Prompt template
prompt_template = PromptTemplate(
template="""You are RRA Assistant, created by Cedric to help users get tax related information in Rwanda. Your task is to answer tax-related questions using the provided context.
Context: {context}
User's Question: {question}
Please follow these steps to answer the question:
Step 1: Analyze the question
Briefly explain your understanding of the question and any key points to address. If it is hi or hello, skip to step 3 and respond with a greeting.
Step 2: Provide relevant information
Using the context provided, give detailed information related to the question. Include specific facts, figures, or explanations from the context.
Step 3: Final answer
Provide a clear, concise answer to the original question. Start directly with the relevant information, avoiding phrases like "In summary" or "To conclude".
Remember:
- If you don't know the answer or can't find relevant information in the context, say so honestly.
- Do not make up information.
- Use the provided context to support your answer.
- Include "For more information, call 3004" at the end of every answer.
Your response:
""",
input_variables=['context', 'question']
)
async def process_query(message: str, language: str, chat_history: list) -> str:
try:
# Handle translation based on selected language
if language == "Kinyarwanda":
query = translator.translate(message, "rw", "en")
logging.info(f"Translated query to English: {query}")
else:
query = message
# Create QA chain
qa = RetrievalQA.from_chain_type(
llm=llm,
chain_type="stuff",
retriever=retriever,
chain_type_kwargs={"prompt": prompt_template},
return_source_documents=True
)
# Get response
response = await asyncio.to_thread(
lambda: qa.invoke({"query": query})
)
logging.info("QA chain invoked successfully.")
# Extract final answer
result_text = response.get('result', '')
final_answer_start = result_text.find("Step 3: Final answer")
if final_answer_start != -1:
answer = result_text[final_answer_start + len("Step 3: Final answer"):].strip()
else:
answer = result_text
# Clean up the answer
answer = re.sub(r'\*\*', '', answer).strip()
answer = re.sub(r'Step \d+:', '', answer).strip()
# Translate response if needed
if language == "Kinyarwanda":
answer = translator.translate(answer, "en", "rw")
logging.info(f"Translated answer to Kinyarwanda: {answer}")
return answer
except Exception as e:
logging.error(f"Query processing error: {str(e)}")
return f"An error occurred: {str(e)}"
# Define separate feedback submission functions to pass feedback type correctly
async def submit_positive_feedback(chat_history, language_choice):
return await submit_feedback("positive", chat_history, language_choice)
async def submit_negative_feedback(chat_history, language_choice):
return await submit_feedback("negative", chat_history, language_choice)
# Create Gradio interface
with gr.Blocks(title="RRA FAQ Chatbot") as demo:
gr.Markdown(
"""
# RRA FAQ Chatbot
Ask tax-related questions in English or Kinyarwanda
> πŸ”’ Your questions and interactions remain private unless you choose to submit feedback, which helps improve our service.
"""
)
# Add language selector
language = gr.Radio(
choices=["English", "Kinyarwanda"],
value="English",
label="Select Language / Hitamo Ururimi"
)
chatbot = gr.Chatbot(
value=[],
show_label=False,
height=400,
type='messages'
)
with gr.Row():
msg = gr.Textbox(
label="Ask your question",
placeholder="Type your tax-related question here...",
show_label=False
)
submit = gr.Button("Send")
# Add feedback section
with gr.Row():
with gr.Column(scale=2):
feedback_label = gr.Markdown("Was this response helpful?")
with gr.Column(scale=1):
feedback_positive = gr.Button("πŸ‘ Helpful")
with gr.Column(scale=1):
feedback_negative = gr.Button("πŸ‘Ž Not Helpful")
# Add feedback status message
feedback_status = gr.Markdown("")
# Connect feedback buttons to their respective functions
feedback_positive.click(
fn=submit_positive_feedback,
inputs=[chatbot, language],
outputs=feedback_status
)
feedback_negative.click(
fn=submit_negative_feedback,
inputs=[chatbot, language],
outputs=feedback_status
)
# Create two sets of examples
with gr.Row() as english_examples_row:
gr.Examples(
examples=[
"What is VAT in Rwanda?",
"How do I register for taxes?",
"What are the tax payment deadlines?",
"How can I get a TIN number?",
"How do I get purchase code?"
],
inputs=msg,
label="English Examples"
)
with gr.Row(visible=False) as kinyarwanda_examples_row:
gr.Examples(
examples=[
"Ese VAT ni iki mu Rwanda?",
"Nabona TIN number nte?",
"Ni ryari tugomba kwishyura imisoro?",
"Ese nandikwa nte ku musoro?",
"Ni gute nabone kode yo kugura?"
],
inputs=msg,
label="Kinyarwanda Examples"
)
async def respond(message, lang, chat_history):
bot_message = await process_query(message, lang, chat_history)
chat_history.append({"role": "user", "content": message})
chat_history.append({"role": "assistant", "content": bot_message})
return "", chat_history
def toggle_language_interface(language_choice):
if language_choice == "English":
placeholder_text = "Type your tax-related question here..."
return {
msg: gr.update(placeholder=placeholder_text),
english_examples_row: gr.update(visible=True),
kinyarwanda_examples_row: gr.update(visible=False)
}
else:
placeholder_text = "Andika ibibazo bijyanye n'umusoro hano"
return {
msg: gr.update(placeholder=placeholder_text),
english_examples_row: gr.update(visible=False),
kinyarwanda_examples_row: gr.update(visible=True)
}
msg.submit(respond, [msg, language, chatbot], [msg, chatbot])
submit.click(respond, [msg, language, chatbot], [msg, chatbot])
# Update both examples visibility and placeholder when language changes
language.change(
fn=toggle_language_interface,
inputs=language,
outputs=[msg, english_examples_row, kinyarwanda_examples_row]
)
gr.Markdown(
"""
### About
- Created by: [Cedric](mailto:[email protected])
- Data source: [RRA Website FAQ](https://www.rra.gov.rw/en/domestic-tax-services/faqs)
**Disclaimer:** This chatbot provides general tax information. For official guidance,
consult RRA or call 3004.
πŸ”’ **Privacy:** Your interactions remain private unless you choose to submit feedback.
"""
)
# Launch the app
if __name__ == "__main__":
try:
demo.launch(share=False)
logging.info("Gradio app launched successfully.")
except Exception as launch_error:
logging.critical(f"Failed to launch Gradio app: {launch_error}")
raise