Spaces:
Sleeping
Sleeping
Delete admin.py
Browse files
admin.py
DELETED
@@ -1,132 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import asyncio
|
3 |
-
import logging
|
4 |
-
from dotenv import load_dotenv
|
5 |
-
from langchain.prompts import PromptTemplate
|
6 |
-
from langchain_community.vectorstores import Qdrant
|
7 |
-
from langchain.chains import RetrievalQA
|
8 |
-
from langchain_groq import ChatGroq
|
9 |
-
from langchain_community.embeddings.fastembed import FastEmbedEmbeddings
|
10 |
-
from langchain_experimental.text_splitter import SemanticChunker
|
11 |
-
from qdrant_client import QdrantClient
|
12 |
-
from qdrant_client.http import models as rest
|
13 |
-
from langchain_community.document_loaders import PyPDFDirectoryLoader
|
14 |
-
import gradio as gr
|
15 |
-
|
16 |
-
# Set up logging
|
17 |
-
logging.basicConfig(filename='app.log', level=logging.ERROR, format='%(asctime)s %(levelname)s %(message)s')
|
18 |
-
load_dotenv()
|
19 |
-
|
20 |
-
# Environment variables
|
21 |
-
api_key = os.getenv('API_KEY1')
|
22 |
-
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
|
23 |
-
qdurl = os.getenv("QDURL")
|
24 |
-
|
25 |
-
# Initialize Qdrant Client
|
26 |
-
try:
|
27 |
-
client = QdrantClient(
|
28 |
-
url=qdurl,
|
29 |
-
port=6333,
|
30 |
-
verify=False,
|
31 |
-
api_key=api_key,
|
32 |
-
)
|
33 |
-
collections = client.get_collections()
|
34 |
-
except Exception as e:
|
35 |
-
print("An error occurred: %s", e)
|
36 |
-
if "server engine not running" in str(e).lower():
|
37 |
-
print("The database engine is not running. Please check the server status.")
|
38 |
-
exit()
|
39 |
-
|
40 |
-
print("Database loaded")
|
41 |
-
|
42 |
-
# Initialize embeddings and database
|
43 |
-
hf = FastEmbedEmbeddings(model_name="nomic-ai/nomic-embed-text-v1.5-Q")
|
44 |
-
|
45 |
-
db = Qdrant(
|
46 |
-
client=client,
|
47 |
-
embeddings=hf,
|
48 |
-
collection_name="RR2"
|
49 |
-
)
|
50 |
-
|
51 |
-
load_vector_store = db
|
52 |
-
retriever = load_vector_store.as_retriever(search_kwargs={"k":3})
|
53 |
-
llm = ChatGroq(temperature=0, model_name="llama3-8b-8192")
|
54 |
-
|
55 |
-
# Collection Management Functions
|
56 |
-
async def create_collection(url, port, collection_name, vector_size):
|
57 |
-
try:
|
58 |
-
client = QdrantClient(
|
59 |
-
url=url,
|
60 |
-
port=int(port),
|
61 |
-
api_key=api_key,
|
62 |
-
verify=False,
|
63 |
-
)
|
64 |
-
client.recreate_collection(
|
65 |
-
collection_name=collection_name,
|
66 |
-
vectors_config=rest.VectorParams(
|
67 |
-
size=int(vector_size),
|
68 |
-
distance=rest.Distance.COSINE,
|
69 |
-
)
|
70 |
-
)
|
71 |
-
return "Collection created successfully."
|
72 |
-
except Exception as e:
|
73 |
-
return f"Failed to create collection: {str(e)}"
|
74 |
-
|
75 |
-
# Data Processing Function
|
76 |
-
async def data_ingest_function(data_path, url, collection_name):
|
77 |
-
loop = asyncio.get_event_loop()
|
78 |
-
try:
|
79 |
-
def load_documents():
|
80 |
-
loader = PyPDFDirectoryLoader(data_path)
|
81 |
-
hf = FastEmbedEmbeddings(model_name="nomic-ai/nomic-embed-text-v1.5-Q")
|
82 |
-
text_splitter = SemanticChunker(hf, breakpoint_threshold_type="interquartile")
|
83 |
-
documents = loader.load_and_split(text_splitter=text_splitter)
|
84 |
-
return documents
|
85 |
-
|
86 |
-
texts = await loop.run_in_executor(None, load_documents)
|
87 |
-
print(f"Processed {len(texts)} text chunks")
|
88 |
-
|
89 |
-
def index_documents():
|
90 |
-
qdrant = Qdrant.from_documents(
|
91 |
-
texts,
|
92 |
-
hf,
|
93 |
-
url=url,
|
94 |
-
api_key=api_key,
|
95 |
-
collection_name=collection_name
|
96 |
-
)
|
97 |
-
return qdrant
|
98 |
-
|
99 |
-
await loop.run_in_executor(None, index_documents)
|
100 |
-
return "Data processing and indexing completed successfully."
|
101 |
-
except Exception as e:
|
102 |
-
return f"Failed to process data: {str(e)}"
|
103 |
-
|
104 |
-
# Gradio Admin Interface
|
105 |
-
with gr.Blocks(theme="soft", title="Admin LLM System", head="Admin for LARGE LANGUAGE MODEL SYSTEM") as admin:
|
106 |
-
with gr.Tab("Collection Management"):
|
107 |
-
with gr.Row():
|
108 |
-
url_input = gr.Textbox(label="Qdrant URL", value="")
|
109 |
-
port_input = gr.Number(label="Port", value=6333)
|
110 |
-
collection_name_input = gr.Textbox(label="Collection Name", value="RR2")
|
111 |
-
vector_size_input = gr.Number(label="Vector Size", value=768)
|
112 |
-
create_collection_btn = gr.Button("Create Collection")
|
113 |
-
create_collection_btn.click(
|
114 |
-
create_collection,
|
115 |
-
inputs=[url_input, port_input, collection_name_input, vector_size_input],
|
116 |
-
outputs=gr.Textbox(label="Result")
|
117 |
-
)
|
118 |
-
|
119 |
-
with gr.Row():
|
120 |
-
data_path_input = gr.Textbox(label="Data Folder Path")
|
121 |
-
url_processing_input = gr.Textbox(label="Qdrant URL for Processing", value="")
|
122 |
-
collection_name_processing_input = gr.Textbox(label="Collection Name for Processing", value="RR2")
|
123 |
-
start_processing_btn = gr.Button("Start Processing")
|
124 |
-
start_processing_btn.click(
|
125 |
-
data_ingest_function,
|
126 |
-
inputs=[data_path_input, url_processing_input, collection_name_processing_input],
|
127 |
-
outputs=gr.Textbox(label="Result")
|
128 |
-
)
|
129 |
-
|
130 |
-
# Launch Interface
|
131 |
-
if __name__ == "__main__":
|
132 |
-
admin.launch(server_name="0.0.0.0", server_port=7860, share=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|