Spaces:
Sleeping
Sleeping
Divyansh12
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -7,13 +7,17 @@ import uuid
|
|
7 |
import time
|
8 |
from pathlib import Path
|
9 |
|
10 |
-
#
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
model =
|
16 |
-
|
|
|
|
|
|
|
|
|
17 |
|
18 |
# Define folders for uploads and results
|
19 |
UPLOAD_FOLDER = "./uploads"
|
@@ -23,44 +27,18 @@ for folder in [UPLOAD_FOLDER, RESULTS_FOLDER]:
|
|
23 |
if not os.path.exists(folder):
|
24 |
os.makedirs(folder)
|
25 |
|
26 |
-
# Function to run the GOT model
|
27 |
-
def run_GOT(image,
|
28 |
unique_id = str(uuid.uuid4())
|
29 |
image_path = os.path.join(UPLOAD_FOLDER, f"{unique_id}.png")
|
30 |
-
result_path = os.path.join(RESULTS_FOLDER, f"{unique_id}.html")
|
31 |
|
32 |
image.save(image_path)
|
33 |
|
34 |
try:
|
35 |
-
|
36 |
-
|
37 |
-
return res, None
|
38 |
-
elif got_mode == "format texts OCR":
|
39 |
-
res = model.chat(tokenizer, image_path, ocr_type='format', render=True, save_render_file=result_path)
|
40 |
-
elif got_mode == "plain multi-crop OCR":
|
41 |
-
res = model.chat_crop(tokenizer, image_path, ocr_type='ocr')
|
42 |
-
return res, None
|
43 |
-
elif got_mode == "format multi-crop OCR":
|
44 |
-
res = model.chat_crop(tokenizer, image_path, ocr_type='format', render=True, save_render_file=result_path)
|
45 |
-
elif got_mode == "plain fine-grained OCR":
|
46 |
-
res = model.chat(tokenizer, image_path, ocr_type='ocr', ocr_box=ocr_box, ocr_color=ocr_color)
|
47 |
-
return res, None
|
48 |
-
elif got_mode == "format fine-grained OCR":
|
49 |
-
res = model.chat(tokenizer, image_path, ocr_type='format', ocr_box=ocr_box, ocr_color=ocr_color, render=True, save_render_file=result_path)
|
50 |
-
|
51 |
-
res_markdown = res
|
52 |
-
|
53 |
-
if "format" in got_mode and os.path.exists(result_path):
|
54 |
-
with open(result_path, 'r') as f:
|
55 |
-
html_content = f.read()
|
56 |
-
encoded_html = base64.b64encode(html_content.encode('utf-8')).decode('utf-8')
|
57 |
-
iframe_src = f"data:text/html;base64,{encoded_html}"
|
58 |
-
iframe = f'<iframe src="{iframe_src}" width="100%" height="600px"></iframe>'
|
59 |
-
return res_markdown, iframe
|
60 |
-
else:
|
61 |
-
return res_markdown, None
|
62 |
except Exception as e:
|
63 |
-
return f"Error: {str(e)}"
|
64 |
finally:
|
65 |
if os.path.exists(image_path):
|
66 |
os.remove(image_path)
|
@@ -81,6 +59,9 @@ uploaded_image = st.file_uploader("Upload your image", type=["png", "jpg", "jpeg
|
|
81 |
# Create two columns for layout
|
82 |
col1, col2 = st.columns(2)
|
83 |
|
|
|
|
|
|
|
84 |
if uploaded_image:
|
85 |
image = Image.open(uploaded_image)
|
86 |
|
@@ -88,33 +69,13 @@ if uploaded_image:
|
|
88 |
st.image(image, caption='Uploaded Image', use_column_width=True)
|
89 |
|
90 |
with col2:
|
91 |
-
|
92 |
-
"plain texts OCR",
|
93 |
-
"format texts OCR",
|
94 |
-
"plain multi-crop OCR",
|
95 |
-
"format multi-crop OCR",
|
96 |
-
"plain fine-grained OCR",
|
97 |
-
"format fine-grained OCR",
|
98 |
-
])
|
99 |
-
|
100 |
-
fine_grained_mode = None
|
101 |
-
ocr_color = ""
|
102 |
-
ocr_box = ""
|
103 |
-
|
104 |
-
if "fine-grained" in got_mode:
|
105 |
-
fine_grained_mode = st.selectbox("Fine-grained type", ["box", "color"])
|
106 |
-
if fine_grained_mode == "box":
|
107 |
-
ocr_box = st.text_input("Input box: [x1,y1,x2,y2]", value="[0,0,100,100]")
|
108 |
-
elif fine_grained_mode == "color":
|
109 |
-
ocr_color = st.selectbox("Color list", ["red", "green", "blue"])
|
110 |
-
|
111 |
-
if st.button("Submit"):
|
112 |
with st.spinner("Processing..."):
|
113 |
-
|
|
|
|
|
114 |
st.text_area("GOT Output", result_text, height=200)
|
115 |
|
116 |
-
if html_result:
|
117 |
-
st.markdown(html_result, unsafe_allow_html=True)
|
118 |
-
|
119 |
# Cleanup old files
|
120 |
cleanup_old_files()
|
|
|
|
7 |
import time
|
8 |
from pathlib import Path
|
9 |
|
10 |
+
# Define a function to load the model
|
11 |
+
def load_model(model_name):
|
12 |
+
if model_name == "GOT_CPU":
|
13 |
+
tokenizer = AutoTokenizer.from_pretrained('srimanth-d/GOT_CPU', trust_remote_code=True)
|
14 |
+
model = AutoModel.from_pretrained('srimanth-d/GOT_CPU', trust_remote_code=True, use_safetensors=True, pad_token_id=tokenizer.eos_token_id)
|
15 |
+
model = model.eval() # Load model on CPU
|
16 |
+
elif model_name == "GOT_GPU":
|
17 |
+
tokenizer = AutoTokenizer.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True)
|
18 |
+
model = AutoModel.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True, low_cpu_mem_usage=True, device_map='cuda', use_safetensors=True, pad_token_id=tokenizer.eos_token_id)
|
19 |
+
model = model.eval().cuda() # Load model on GPU
|
20 |
+
return tokenizer, model
|
21 |
|
22 |
# Define folders for uploads and results
|
23 |
UPLOAD_FOLDER = "./uploads"
|
|
|
27 |
if not os.path.exists(folder):
|
28 |
os.makedirs(folder)
|
29 |
|
30 |
+
# Function to run the GOT model for plain text OCR
|
31 |
+
def run_GOT(image, tokenizer, model):
|
32 |
unique_id = str(uuid.uuid4())
|
33 |
image_path = os.path.join(UPLOAD_FOLDER, f"{unique_id}.png")
|
|
|
34 |
|
35 |
image.save(image_path)
|
36 |
|
37 |
try:
|
38 |
+
res = model.chat(tokenizer, image_path, ocr_type='ocr') # Only using plain text OCR
|
39 |
+
return res
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
except Exception as e:
|
41 |
+
return f"Error: {str(e)}"
|
42 |
finally:
|
43 |
if os.path.exists(image_path):
|
44 |
os.remove(image_path)
|
|
|
59 |
# Create two columns for layout
|
60 |
col1, col2 = st.columns(2)
|
61 |
|
62 |
+
# Model selection
|
63 |
+
model_option = st.selectbox("Select Model", ["GOT_CPU", "GOT_GPU"])
|
64 |
+
|
65 |
if uploaded_image:
|
66 |
image = Image.open(uploaded_image)
|
67 |
|
|
|
69 |
st.image(image, caption='Uploaded Image', use_column_width=True)
|
70 |
|
71 |
with col2:
|
72 |
+
if st.button("Run Plain Text OCR"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
with st.spinner("Processing..."):
|
74 |
+
# Load the selected model
|
75 |
+
tokenizer, model = load_model(model_option)
|
76 |
+
result_text = run_GOT(image, tokenizer, model)
|
77 |
st.text_area("GOT Output", result_text, height=200)
|
78 |
|
|
|
|
|
|
|
79 |
# Cleanup old files
|
80 |
cleanup_old_files()
|
81 |
+
|