Divyansh12 commited on
Commit
f725219
·
verified ·
1 Parent(s): 7c72c27

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -21
app.py CHANGED
@@ -2,7 +2,6 @@ import streamlit as st
2
  from langchain.chains import ConversationChain
3
  from langchain.memory import ConversationBufferMemory
4
  from langchain.schema import HumanMessage, AIMessage
5
- from langchain.chat_models.base import BaseChatModel
6
  from llama_cpp import Llama
7
 
8
  # Initialize the Llama model
@@ -15,28 +14,11 @@ llm = Llama.from_pretrained(
15
  chat_format="chatml"
16
  )
17
 
18
- # Define the LangChain model for Llama
19
- class LlamaChatModel(BaseChatModel):
20
- def _llm_type(self) -> str:
21
- return "llama"
22
-
23
- def _generate(self, messages, stop=None):
24
- # Prepare prompt from conversation history
25
- prompt = "\n".join(
26
- f"user: {msg.content}" if isinstance(msg, HumanMessage) else f"assistant: {msg.content}"
27
- for msg in messages
28
- )
29
-
30
- # Generate response from Llama
31
- response = llm.chat(prompt)
32
- return [AIMessage(content=response)]
33
-
34
- # Initialize memory and chat model
35
  memory = ConversationBufferMemory(return_messages=True)
36
- llama_chat_model = LlamaChatModel()
37
 
38
- # Create the conversation chain
39
- conversation = ConversationChain(memory=memory, llm=llama_chat_model)
40
 
41
  # Streamlit UI
42
  st.title("Chatbot with LangChain and Llama")
 
2
  from langchain.chains import ConversationChain
3
  from langchain.memory import ConversationBufferMemory
4
  from langchain.schema import HumanMessage, AIMessage
 
5
  from llama_cpp import Llama
6
 
7
  # Initialize the Llama model
 
14
  chat_format="chatml"
15
  )
16
 
17
+ # Initialize memory
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18
  memory = ConversationBufferMemory(return_messages=True)
 
19
 
20
+ # Create the conversation chain directly using the Llama model
21
+ conversation = ConversationChain(memory=memory, llm=llm)
22
 
23
  # Streamlit UI
24
  st.title("Chatbot with LangChain and Llama")