viboognesh commited on
Commit
11873da
·
verified ·
1 Parent(s): b819f8d

Upload folder using huggingface_hub

Browse files
Files changed (5) hide show
  1. app.py +50 -0
  2. doaz_image.png +0 -0
  3. pdf_processing.py +144 -0
  4. prompts.py +342 -0
  5. requirements.txt +10 -0
app.py ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import pandas as pd
3
+ from PIL import Image
4
+ import io
5
+ from pdf_processing import process_comparison_data, extract_text_with_pypdf
6
+
7
+ def simulate_processing(pdf1, pdf2, tags):
8
+ # This is a placeholder function. Replace with actual processing logic
9
+ return [
10
+ ('key', 'Sample Data 1', 'Sample Data 2'),
11
+ ('index', 'More Sample Data 1', 'More Sample Data 2')
12
+ ]
13
+
14
+ # App title
15
+ st.title("PDF Tag Processing")
16
+
17
+ # Sidebar configuration
18
+ st.sidebar.header("Input Configuration")
19
+ uploaded_file1 = st.sidebar.file_uploader("Upload First PDF", type="pdf")
20
+ uploaded_file2 = st.sidebar.file_uploader("Upload Second PDF", type="pdf")
21
+ tags_input = st.sidebar.text_area("Enter Tags (comma-separated)")
22
+
23
+ # Process button
24
+ if st.button("Process"):
25
+ # pdf1_text = extract_text_with_pypdf(uploaded_file1)
26
+ if not uploaded_file1:
27
+ st.error("Please upload a PDF file in the first pdf space")
28
+ elif not uploaded_file2:
29
+ st.error("Please upload a PDF file in the second pdf space")
30
+ elif not tags_input:
31
+ st.error("Please add some tags in the text area")
32
+ else:
33
+ df = process_comparison_data(uploaded_file1, uploaded_file2, [t.strip() for t in tags_input.split(',') if t.strip()])
34
+ # Display results in a table
35
+ st.subheader("Results")
36
+ st.dataframe(df)
37
+
38
+
39
+
40
+ # Display instructions
41
+ st.write("""
42
+ This app allows you to upload two PDF files and enter tags. When you click "Process",
43
+ it extracts information related to the tags from both the pdfs and compares the information
44
+ in each pdf for each tag and displays the results in a table.
45
+ """)
46
+
47
+ # Add an image to illustrate the concept
48
+ image = Image.open('doaz_image.png') # Make sure to replace with your own image
49
+ st.image(image, caption='Doaz')
50
+
doaz_image.png ADDED
pdf_processing.py ADDED
@@ -0,0 +1,144 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import fitz
2
+ from PyPDF2 import PdfReader
3
+ from langchain_text_splitters import RecursiveCharacterTextSplitter
4
+ from anthropic import Anthropic
5
+ from prompts import INFORMATION_EXTRACTION_PROMPT, INFORMATION_EXTRACTION_TAG_FORMAT, verify_INFORMATION_EXTRACTION_PROMPT, extract_INFORMATION_EXTRACTION_PROMPT
6
+ from prompts import verify_all_tags_present
7
+ from prompts import COMPARISON_INPUT_FORMAT, COMPARISON_PROMPT, COMPARISON_TAG_FORMAT, verify_COMPARISON_PROMPT, extract_COMPARISON_PROMPT
8
+ import pandas as pd
9
+ from concurrent.futures import ThreadPoolExecutor
10
+ import streamlit as st
11
+ from dotenv import load_dotenv
12
+ load_dotenv()
13
+
14
+ def make_llm_api_call(messages):
15
+ print("Making LLM api call")
16
+ client = Anthropic()
17
+ message = client.messages.create(
18
+ model="claude-3-haiku-20240307",
19
+ max_tokens=4096,
20
+ temperature=0,
21
+ messages=messages,
22
+ )
23
+ print("LLM response received")
24
+ return message
25
+
26
+ def loop_verify_format(answer_text, tag_format, messages, verify_func,root_tag):
27
+ i = 0
28
+ while not verify_func(answer_text):
29
+ print("Wrong format")
30
+ assistant_message = {"role": "assistant", "content": [{"type":"text", "text":answer_text}]}
31
+ corrective_message = {"role":"user", "content":[{"type": "text", "text": f"You did not provide your answer in the correct format. Please provide your answer in the following format:\n{tag_format}"}]}
32
+ messages.append(assistant_message)
33
+ messages.append(corrective_message)
34
+ message = make_llm_api_call(messages)
35
+ message_text = message.content[0].text
36
+ answer_text = f"<{root_tag}>\n{message_text.split(f'<{root_tag}>')[1].split(f'</{root_tag}>')[0].strip()}\n</{root_tag}>"
37
+ if i > 3:
38
+ raise Exception(f"LLM failed to provide a valid answer in {i-1} attempts")
39
+ return answer_text
40
+
41
+ def loop_verify_all_tags_present(answer_text, tags, user_message, tag_format, verify_func, root_tag):
42
+ missing_tags, _ = verify_all_tags_present(answer_text, tags)
43
+ if missing_tags:
44
+ print("There are missing tags", missing_tags)
45
+ assistant_message = {"role":"assistant", "content":[{"type":"text", "text":answer_text}]}
46
+ corrective_message = [{"role":"user", "content":[{"type":"text", "text":("In your response, the following tags are missing:\n" + "\n".join([f"<tag>{tag}</tag>" for tag in missing_tags]) + "\n\nPlease add information about the above missing tags and give a complete correct response.")}]}]
47
+ messages = [user_message, assistant_message, corrective_message]
48
+ message = make_llm_api_call(messages)
49
+ message_text = message.content[0].text
50
+ answer_text = f"<{root_tag}>\n{message_text.split(f'<{root_tag}>')[1].split(f'</{root_tag}>')[0].strip()}\n</{root_tag}>"
51
+ answer_text = loop_verify_format(answer_text, tag_format, [user_message], verify_func, root_tag)
52
+ missing_tags, _ = verify_all_tags_present(answer_text, tags)
53
+ return answer_text
54
+
55
+ def extract_information_from_pdf(pdf_text, tags):
56
+ tag_text = "\n".join([f"<tag>{tag}</tag>" for tag in tags])
57
+ prompt = INFORMATION_EXTRACTION_PROMPT.format(TEXT=pdf_text, TAGS=tag_text)
58
+ user_message = {"role": "user", "content": [{"type": "text", "text": prompt}]}
59
+ answer_text = ""
60
+ messages = [user_message]
61
+ message = make_llm_api_call(messages)
62
+ message_text = message.content[0].text
63
+ answer_text = f"<answer>\n{message_text.split('<answer>')[1].split('</answer>')[0].strip()}\n</answer>"
64
+ answer_text = loop_verify_format(answer_text, INFORMATION_EXTRACTION_TAG_FORMAT, messages, verify_INFORMATION_EXTRACTION_PROMPT, 'answer')
65
+ answer_text = loop_verify_all_tags_present(answer_text, tags, user_message, INFORMATION_EXTRACTION_PROMPT, verify_INFORMATION_EXTRACTION_PROMPT, 'answer')
66
+
67
+ return extract_INFORMATION_EXTRACTION_PROMPT(answer_text)
68
+
69
+
70
+ def extract_text_with_pypdf(pdf_path):
71
+ reader = PdfReader(pdf_path)
72
+ text = ""
73
+ for page in reader.pages:
74
+ text += f"{page.extract_text()}\n"
75
+ return text.strip()
76
+
77
+ def get_tag_info_for_pdf(pdf, tags):
78
+ text = extract_text_with_pypdf(pdf)
79
+ text_splitter = RecursiveCharacterTextSplitter(chunk_size=100000, chunk_overlap=0)
80
+ chunks = text_splitter.split_text(text)
81
+ tag_data = {tag:"" for tag in tags}
82
+ print("chunk length",len(chunks))
83
+ for chunk in chunks:
84
+ data = extract_information_from_pdf(chunk, tags)
85
+ for tag in tags:
86
+ tag_data.update({tag:f"{tag_data.get(tag)}\n{data.get(tag)}"})
87
+ return tag_data
88
+
89
+ def do_comparison_process(pdf1_data, pdf2_data, tags):
90
+ tag_data_list = []
91
+ for tag in tags:
92
+ tag_info_text = COMPARISON_INPUT_FORMAT.format(tag=tag, pdf1_information=pdf1_data.get(tag), pdf2_information=pdf2_data.get(tag))
93
+ tag_data_list.append(tag_info_text)
94
+ tag_data_text = "\n".join(tag_data_list)
95
+ prompt = COMPARISON_PROMPT.format(TAG_INFO= tag_data_text)
96
+ user_message = {"role": "user", "content": [{"type": "text", "text": prompt}]}
97
+ message = make_llm_api_call([user_message])
98
+ message_text = message.content[0].text
99
+ comparison_text = f"<comparison>\n{message_text.split('<comparison>')[1].split('</comparison>')[0].strip()}\n</comparison>"
100
+ comparison_text = loop_verify_format(comparison_text, COMPARISON_TAG_FORMAT, [user_message], verify_COMPARISON_PROMPT, 'comparison')
101
+ comparison_text = loop_verify_all_tags_present(comparison_text, tags, user_message, COMPARISON_TAG_FORMAT, verify_COMPARISON_PROMPT, 'comparison')
102
+
103
+ return extract_COMPARISON_PROMPT(comparison_text)
104
+
105
+ # def get_pdf_data(pdf1, pdf2, tags):
106
+ # def get_tag_info_for_pdf(pdf, tags):
107
+ # text = extract_text_with_pypdf(pdf)
108
+ # text_splitter = RecursiveCharacterTextSplitter(chunk_size=100000, chunk_overlap=0)
109
+ # chunks = text_splitter.split_text(text)
110
+ # tag_data = {tag:"" for tag in tags}
111
+ # for chunk in chunks:
112
+ # data = extract_information_from_pdf(chunk, tags)
113
+ # for tag in tags:
114
+ # tag_data.update({tag:f"{tag_data.get(tag)}\n{data.get(tag)}"})
115
+ # return tag_data
116
+
117
+ # # Create a ThreadPoolExecutor (or ProcessPoolExecutor for CPU-bound tasks)
118
+ # with ThreadPoolExecutor(max_workers=2) as executor:
119
+ # # Submit the functions to the executor
120
+ # pdf1_future = executor.submit(get_tag_info_for_pdf, pdf1, tags)
121
+ # pdf2_future = executor.submit(get_tag_info_for_pdf, pdf2, tags)
122
+
123
+ # # Collect the results
124
+ # pdf1_data = pdf1_future.result()
125
+ # pdf2_data = pdf2_future.result()
126
+
127
+ # return pdf1_data, pdf2_data
128
+
129
+
130
+ def process_comparison_data(pdf1, pdf2, tags):
131
+ with st.spinner("Processing PDF 1"):
132
+ pdf1_data = get_tag_info_for_pdf(pdf1, tags)
133
+ with st.spinner("Processing PDF 2"):
134
+ pdf2_data = get_tag_info_for_pdf(pdf2, tags)
135
+ with st.spinner("Generating Comparison Data"):
136
+ comparison_data = do_comparison_process(pdf1_data, pdf2_data, tags)
137
+ # pdf1_data, pdf2_data = get_pdf_data(pdf1, pdf2, tags)
138
+ # comparison_data = do_comparison_process(pdf1_data, pdf2_data, tags)
139
+ table_data = []
140
+ for tag in tags:
141
+ table_data.append((tag, pdf1_data.get(tag), pdf2_data.get(tag), comparison_data.get(tag)))
142
+ df = pd.DataFrame(table_data, columns=['Tags', 'PDF 1', 'PDF 2', 'Difference'])
143
+ df.set_index('Tags', inplace=True)
144
+ return df
prompts.py ADDED
@@ -0,0 +1,342 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import xml.etree.ElementTree as ET
2
+ import re
3
+
4
+ INFORMATION_EXTRACTION_PROMPT = """You will be given a text and a list of tags. Your task is to extract all important information from the text related to each tag separately and provide the information with each tag and their corresponding relevant information.
5
+
6
+ Here is the input text:
7
+ <text>
8
+ {TEXT}
9
+ </text>
10
+
11
+ Here is the list of tags:
12
+ <all_tags>
13
+ {TAGS}
14
+ </all_tags>
15
+
16
+ Follow these steps to complete the task:
17
+
18
+ 1. Read through the entire text carefully.
19
+
20
+ 2. For each tag in the list:
21
+ a. Identify all relevant information in the text that relates to the tag.
22
+ b. Extract and summarize the important points related to that tag.
23
+ c. If no relevant information is found for a tag, note that as well.
24
+
25
+ 3. Format your output as follows:
26
+ - Use <tag_info> tags to enclose the information for each tag.
27
+ - Within each <tag_info> section:
28
+ - Start with the tag name in <tag> tags.
29
+ - Follow with the extracted information in <info> tags.
30
+ - If no relevant information is found for a tag, just leave section empty within the <info> tags but make sure the <info> tags are present.
31
+
32
+ 4. Ensure that the extracted information is concise yet comprehensive, capturing all important points related to each tag.
33
+
34
+ Here's an example of how your output should be formatted:
35
+
36
+ <answer>
37
+ <tag_info>
38
+ <tag>Tag1</tag>
39
+ <info>Relevant information for Tag1 extracted from the text...</info>
40
+ </tag_info>
41
+
42
+ <tag_info>
43
+ <tag>Tag2</tag>
44
+ <info>Relevant information for Tag2 extracted from the text...</info>
45
+ </tag_info>
46
+
47
+ <tag_info>
48
+ <tag>Tag3</tag>
49
+ <info></info>
50
+ </tag_info>
51
+ </answer>
52
+
53
+ Remember to include all tags from the provided list, even if no relevant information is found for some of them.
54
+
55
+ Provide your complete answer within <answer> tags."""
56
+
57
+ INFORMATION_EXTRACTION_TAG_FORMAT = """<answer>
58
+ <tag_info>
59
+ <tag>Tag1</tag>
60
+ <info>Relevant information for Tag1 extracted from the text...</info>
61
+ </tag_info>
62
+
63
+ <tag_info>
64
+ <tag>Tag2</tag>
65
+ <info>Relevant information for Tag2 extracted from the text...</info>
66
+ </tag_info>
67
+
68
+ <tag_info>
69
+ <tag>Tag3</tag>
70
+ <info></info>
71
+ </tag_info>
72
+ </answer>"""
73
+
74
+ COMPARISON_PROMPT = """You are tasked with comparing information from two PDFs for a given set of tags. The input will be provided in the following format:
75
+
76
+ <tag_info>
77
+ {TAG_INFO}
78
+ </tag_info>
79
+
80
+ Follow these steps to complete the task:
81
+
82
+ 1. Read through the entire input carefully.
83
+
84
+ 2. For each tag data, you will see the tag and the information related to the tag from pdf1 and pdf2. Your job is to compare this information and explain the differences.
85
+
86
+ 3. When comparing the information:
87
+ - Look for differences in content, wording, or details.
88
+ - Note if one PDF provides information that the other doesn't.
89
+ - Identify any contradictions between the two PDFs.
90
+
91
+ 4. Format your output as follows:
92
+ - Use <comparison> tags to enclose your entire response.
93
+ - For each tag, use <tag_difference> tags to enclose the explanation of differences.
94
+ - Within each <tag_difference> section, use <tag> to enclose the tag name, and <difference> to enclose the explanation of differences.
95
+ - Provide a clear, concise explanation of the differences between pdf1 and pdf2 for that tag.
96
+ - Your output should be in korean language
97
+
98
+ 5. Here's an example of how your output should look:
99
+
100
+ <comparison>
101
+ <tag_difference>
102
+ <tag>Tag 1</tag>
103
+ <difference>
104
+ PDF1 states that the product is available in three colors (red, blue, green), while PDF2 mentions four colors (red, blue, green, yellow).
105
+ </difference>
106
+ </tag_difference>
107
+ <tag_difference>
108
+ <tag>Tag 2</tag>
109
+ <difference>
110
+ The information in PDF1 and PDF2 is identical for this tag, both describing the product's weight as 500g.
111
+ </difference>
112
+ </tag_difference>
113
+ </comparison>
114
+
115
+ 6. Additional guidelines:
116
+ - Be thorough in your comparison, addressing all aspects of the information provided.
117
+ - If there are no differences for a particular tag, state this clearly.
118
+ - Use clear and concise language in your explanations.
119
+ - If one PDF lacks information that the other provides, explicitly mention this.
120
+
121
+ Begin your analysis with the first tag in the input and proceed through all tags sequentially. Ensure that your output is comprehensive and accurately reflects the differences between the two PDFs for each tag and is in korean language."""
122
+
123
+ COMPARISON_INPUT_FORMAT = """<tag_data>
124
+ <tag>{tag}</tag>
125
+ <pdf1>{pdf1_information}</pdf1>
126
+ <pdf2>{pdf2_information}</pdf2>
127
+ </tag_data>"""
128
+
129
+ COMPARISON_TAG_FORMAT = """<comparison>
130
+ <tag_difference>
131
+ <tag>Tag 1</tag>
132
+ <difference>
133
+ PDF1 states that the product is available in three colors (red, blue, green), while PDF2 mentions four colors (red, blue, green, yellow).
134
+ </difference>
135
+ </tag_difference>
136
+ <tag_difference>
137
+ <tag>Tag 2</tag>
138
+ <difference>
139
+ The information in PDF1 and PDF2 is identical for this tag, both describing the product's weight as 500g.
140
+ </difference>
141
+ </tag_difference>
142
+ </comparison>"""
143
+
144
+ # def verify_INFORMATION_EXTRACTION_PROMPT(text):
145
+ # try:
146
+ # root = ET.fromstring(text)
147
+
148
+ # # Check if the root element is 'answer'
149
+ # if root.tag != 'answer':
150
+ # print("root tag is wrong")
151
+ # return False
152
+
153
+ # # Check if all child elements are 'tag_info'
154
+ # for child in root:
155
+ # if child.tag != 'tag_info':
156
+ # print("tag_info tag is wrong")
157
+ # return False
158
+
159
+ # # Verify each tag_info element
160
+ # for tag_info in root.findall('.//tag_info'):
161
+ # tag = tag_info.find('tag')
162
+ # info = tag_info.find('info')
163
+
164
+ # # Check if tag exists and is not empty
165
+ # if tag is None:
166
+ # print("tag is missing")
167
+ # return False
168
+
169
+ # if not tag.text.strip():
170
+ # print("tag is empty")
171
+ # return False
172
+
173
+ # # Check if info exists and is optional
174
+ # if info is None:
175
+ # print("info is missing")
176
+ # return False
177
+
178
+ # # If all checks pass, the format is valid
179
+ # return True
180
+
181
+ # except ET.ParseError:
182
+ # # If parsing fails, the text doesn't follow the expected format
183
+ # print(text)
184
+ # return False
185
+
186
+
187
+ def verify_INFORMATION_EXTRACTION_PROMPT(text):
188
+ # Regular expression pattern
189
+ pattern = r'<answer>(.*?)<\/answer>'
190
+
191
+ # Try to match the overall structure
192
+ match = re.search(pattern, text, flags=re.DOTALL)
193
+
194
+ # Extract the content between <answer> tags
195
+ content = match.group(1)
196
+
197
+ # Pattern for tag_info blocks
198
+ tag_info_pattern = r'<tag_info>\s*<tag>(.*?)<\/tag>\s*<info>(.*?)<\/info>\s*<\/tag_info>'
199
+
200
+ # Find all tag_info blocks
201
+ matches = re.findall(tag_info_pattern, content,flags=re.DOTALL)
202
+ # Check each match
203
+ for match in matches:
204
+ tag, info = match
205
+
206
+ # Check if tag exists and is not empty
207
+ if not tag.strip():
208
+ print("Tag is empty")
209
+ return False
210
+
211
+
212
+ # If all checks pass, the format is valid
213
+ return True
214
+
215
+ # def verify_COMPARISON_PROMPT(text):
216
+ # try:
217
+ # root = ET.fromstring(text)
218
+
219
+ # # Check if the root element is 'answer'
220
+ # if root.tag != 'comparison':
221
+ # return False
222
+
223
+ # # Check if all child elements are 'tag_difference'
224
+ # for child in root:
225
+ # if child.tag != 'tag_difference':
226
+ # return False
227
+
228
+ # # Verify each tag_difference element
229
+ # for tag_difference in root.findall('.//tag_difference'):
230
+ # tag = tag_difference.find('tag')
231
+ # difference = tag_difference.find('difference')
232
+
233
+ # # Check if tag exists and is not empty
234
+ # if tag is None:
235
+ # return False
236
+
237
+ # if not tag.text.strip():
238
+ # return False
239
+
240
+ # # Check if info exists and is optional
241
+ # if difference is None:
242
+ # return False
243
+
244
+ # # If all checks pass, the format is valid
245
+ # return True
246
+
247
+ # except ET.ParseError:
248
+ # # If parsing fails, the text doesn't follow the expected format
249
+ # return False
250
+
251
+ def verify_COMPARISON_PROMPT(text):
252
+ # Regular expression pattern
253
+ pattern = r'<comparison>(.*?)<\/comparison>'
254
+
255
+ # Try to match the overall structure
256
+ match = re.search(pattern, text, flags=re.DOTALL)
257
+ if not match:
258
+ print("no comparison match")
259
+ return False
260
+
261
+ # Extract the content between <comparison> tags
262
+ content = match.group(1)
263
+
264
+ # Pattern for tag_difference blocks
265
+ tag_difference_pattern = r'<tag_difference>\s*<tag>(.*?)<\/tag>\s*<difference>(.*?)<\/difference>\s*<\/tag_difference>'
266
+
267
+ # Find all tag_info blocks
268
+ matches = re.findall(tag_difference_pattern, content,flags=re.DOTALL)
269
+ # Check each match
270
+ for match in matches:
271
+ tag, difference = match
272
+
273
+ # Check if tag exists and is not empty
274
+ if not tag.strip():
275
+ print("Tag is empty")
276
+ return False
277
+
278
+
279
+ # If all checks pass, the format is valid
280
+ return True
281
+
282
+ def verify_all_tags_present(text, tags):
283
+ tag_pattern = r'<tag>(.*?)<\/tag>'
284
+ tags_llm = re.findall(tag_pattern, text,flags=re.DOTALL)
285
+ tags = [t.strip() for t in tags]
286
+ tags_llm = [t.strip() for t in tags_llm]
287
+ extra_tags = []
288
+ missing_tags = []
289
+ for tag in tags:
290
+ if tag not in tags_llm:
291
+ missing_tags.append(tag)
292
+ for tag in tags_llm:
293
+ if tag not in tags:
294
+ extra_tags.append(tag)
295
+ return missing_tags, extra_tags
296
+
297
+ def extract_INFORMATION_EXTRACTION_PROMPT(text):
298
+ # Regular expression pattern
299
+ pattern = r'<answer>(.*?)<\/answer>'
300
+
301
+ # Try to match the overall structure
302
+ match = re.search(pattern, text, flags=re.DOTALL)
303
+
304
+ # Extract the content between <answer> tags
305
+ content = match.group(1)
306
+
307
+ # Pattern for tag_info blocks
308
+ tag_info_pattern = r'<tag_info>\s*<tag>(.*?)<\/tag>\s*<info>(.*?)<\/info>\s*<\/tag_info>'
309
+
310
+ # Find all tag_info blocks
311
+ matches = re.findall(tag_info_pattern, content,flags=re.DOTALL)
312
+ # Check each match
313
+ data = {}
314
+ for match in matches:
315
+ tag, info = match
316
+
317
+ data.update({tag:info})
318
+
319
+ return data
320
+
321
+ def extract_COMPARISON_PROMPT(text):
322
+ # Regular expression pattern
323
+ pattern = r'<comparison>(.*?)<\/comparison>'
324
+
325
+ # Try to match the overall structure
326
+ match = re.search(pattern, text, flags=re.DOTALL)
327
+
328
+ # Extract the content between <comparison> tags
329
+ content = match.group(1)
330
+
331
+ # Pattern for tag_difference blocks
332
+ tag_difference_pattern = r'<tag_difference>\s*<tag>(.*?)<\/tag>\s*<difference>(.*?)<\/difference>\s*<\/tag_difference>'
333
+
334
+ # Find all tag_info blocks
335
+ matches = re.findall(tag_difference_pattern, content,flags=re.DOTALL)
336
+ # Check each match
337
+ data = {}
338
+ for match in matches:
339
+ tag, difference = match
340
+ data.update({tag:difference})
341
+
342
+ return data
requirements.txt ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ streamlit
2
+ pandas
3
+ pillow
4
+ PyPDF2
5
+ fitz
6
+ PyMuPDF
7
+ langchain-text-splitters
8
+ anthropic
9
+ python-dotenv
10
+ tiktoken