Spaces:
Sleeping
Sleeping
# import streamlit as st | |
# import os | |
# from PyPDF2 import PdfReader | |
# import pymupdf | |
# import numpy as np | |
# import cv2 | |
# import shutil | |
# import imageio | |
# from PIL import Image | |
# import imagehash | |
# import matplotlib.pyplot as plt | |
# from llama_index.core.indices import MultiModalVectorStoreIndex | |
# from llama_index.vector_stores.qdrant import QdrantVectorStore | |
# from llama_index.core import SimpleDirectoryReader, StorageContext | |
# import qdrant_client | |
# from llama_index.core import PromptTemplate | |
# from llama_index.core.query_engine import SimpleMultiModalQueryEngine | |
# from llama_index.llms.openai import OpenAI | |
# from llama_index.core import load_index_from_storage, get_response_synthesizer | |
# import tempfile | |
# from qdrant_client import QdrantClient, models | |
# import getpass | |
# curr_user = getpass.getuser() | |
# # from langchain.vectorstores import Chroma | |
# # To connect to the same event-loop, | |
# # allows async events to run on notebook | |
# # import nest_asyncio | |
# # nest_asyncio.apply() | |
# from dotenv import load_dotenv | |
# load_dotenv() | |
# def extract_text_from_pdf(pdf_path): | |
# reader = PdfReader(pdf_path) | |
# full_text = '' | |
# for page in reader.pages: | |
# text = page.extract_text() | |
# full_text += text | |
# return full_text | |
# def extract_images_from_pdf(pdf_path, img_save_path): | |
# doc = pymupdf.open(pdf_path) | |
# for page in doc: | |
# img_number = 0 | |
# for block in page.get_text("dict")["blocks"]: | |
# if block['type'] == 1: | |
# name = os.path.join(img_save_path, f"img{page.number}-{img_number}.{block['ext']}") | |
# out = open(name, "wb") | |
# out.write(block["image"]) | |
# out.close() | |
# img_number += 1 | |
# def is_empty(img_path): | |
# image = cv2.imread(img_path, 0) | |
# std_dev = np.std(image) | |
# return std_dev < 1 | |
# def move_images(source_folder, dest_folder): | |
# image_files = [f for f in os.listdir(source_folder) | |
# if f.lower().endswith(('.jpg', '.jpeg', '.png', '.gif'))] | |
# os.makedirs(dest_folder, exist_ok=True) | |
# moved_count = 0 | |
# for file in image_files: | |
# src_path = os.path.join(source_folder, file) | |
# if not is_empty(src_path): | |
# shutil.move(src_path, os.path.join(dest_folder, file)) | |
# moved_count += 1 | |
# return moved_count | |
# def remove_low_size_images(data_path): | |
# images_list = os.listdir(data_path) | |
# low_size_photo_list = [] | |
# for one_image in images_list: | |
# image_path = os.path.join(data_path, one_image) | |
# try: | |
# pic = imageio.imread(image_path) | |
# size = pic.size | |
# if size < 100: | |
# low_size_photo_list.append(one_image) | |
# except: | |
# pass | |
# for one_image in low_size_photo_list[1:]: | |
# os.remove(os.path.join(data_path, one_image)) | |
# def calc_diff(img1 , img2) : | |
# i1 = Image.open(img1) | |
# i2 = Image.open(img2) | |
# h1 = imagehash.phash(i1) | |
# h2 = imagehash.phash(i2) | |
# return h1 - h2 | |
# def remove_duplicate_images(data_path) : | |
# image_files = os.listdir(data_path) | |
# only_images = [] | |
# for one_image in image_files : | |
# if one_image.endswith('jpeg') or one_image.endswith('png') or one_image.endswith('jpg') : | |
# only_images.append(one_image) | |
# only_images1 = sorted(only_images) | |
# for one_image in only_images1 : | |
# for another_image in only_images1 : | |
# try : | |
# if one_image == another_image : | |
# continue | |
# else : | |
# diff = calc_diff(os.path.join(data_path ,one_image) , os.path.join(data_path ,another_image)) | |
# if diff ==0 : | |
# os.remove(os.path.join(data_path , another_image)) | |
# except Exception as e: | |
# print(e) | |
# pass | |
# # from langchain_chroma import Chroma | |
# # import chromadb | |
# def initialize_qdrant(temp_dir , file_name , user): | |
# client = qdrant_client.QdrantClient(path=f"qdrant_mm_db_pipeline_{user}_{file_name}") | |
# # client = qdrant_client.QdrantClient(url = "http://localhost:2452") | |
# # client = qdrant_client.QdrantClient(url="4b0af7be-d5b3-47ac-b215-128ebd6aa495.europe-west3-0.gcp.cloud.qdrant.io:6333", api_key="CO1sNGLmC6R_Q45qSIUxBSX8sxwHud4MCm4as_GTI-vzQqdUs-bXqw",) | |
# # client = qdrant_client.AsyncQdrantClient(location = ":memory:") | |
# if "vectordatabase" not in st.session_state or not st.session_state.vectordatabase: | |
# # text_store = client.create_collection(f"text_collection_pipeline_{user}_{file_name}" ) | |
# # image_store = client.create_collection(f"image_collection_pipeline_{user}_{file_name}" ) | |
# text_store = QdrantVectorStore( client = client , collection_name=f"text_collection_pipeline_{user}_{file_name}" ) | |
# image_store = QdrantVectorStore(client = client , collection_name=f"image_collection_pipeline_{user}_{file_name}") | |
# storage_context = StorageContext.from_defaults(vector_store=text_store, image_store=image_store) | |
# documents = SimpleDirectoryReader(os.path.join(temp_dir, f"my_own_data_{user}_{file_name}")).load_data() | |
# index = MultiModalVectorStoreIndex.from_documents(documents, storage_context=storage_context) | |
# st.session_state.vectordatabase = index | |
# else : | |
# index = st.session_state.vectordatabase | |
# retriever_engine = index.as_retriever(similarity_top_k=1, image_similarity_top_k=1) | |
# return retriever_engine | |
# def plot_images(image_paths): | |
# images_shown = 0 | |
# plt.figure(figsize=(16, 9)) | |
# for img_path in image_paths: | |
# if os.path.isfile(img_path): | |
# image = Image.open(img_path) | |
# plt.subplot(2, 3, images_shown + 1) | |
# plt.imshow(image) | |
# plt.xticks([]) | |
# plt.yticks([]) | |
# images_shown += 1 | |
# if images_shown >= 6: | |
# break | |
# def retrieve_and_query(query, retriever_engine): | |
# retrieval_results = retriever_engine.retrieve(query) | |
# qa_tmpl_str = ( | |
# "Context information is below.\n" | |
# "---------------------\n" | |
# "{context_str}\n" | |
# "---------------------\n" | |
# "Given the context information , " | |
# "answer the query in detail.\n" | |
# "Query: {query_str}\n" | |
# "Answer: " | |
# ) | |
# qa_tmpl = PromptTemplate(qa_tmpl_str) | |
# llm = OpenAI(model="gpt-4o", temperature=0) | |
# response_synthesizer = get_response_synthesizer(response_mode="refine", text_qa_template=qa_tmpl, llm=llm) | |
# response = response_synthesizer.synthesize(query, nodes=retrieval_results) | |
# retrieved_image_path_list = [] | |
# for node in retrieval_results: | |
# if (node.metadata['file_type'] == 'image/jpeg') or (node.metadata['file_type'] == 'image/png'): | |
# if node.score > 0.25: | |
# retrieved_image_path_list.append(node.metadata['file_path']) | |
# return response, retrieved_image_path_list | |
# #tmpnimvp35m , tmpnimvp35m , tmpydpissmv | |
# def process_pdf(pdf_file): | |
# temp_dir = tempfile.TemporaryDirectory() | |
# unique_folder_name = temp_dir.name.split('/')[-1] | |
# temp_pdf_path = os.path.join(temp_dir.name, pdf_file.name) | |
# with open(temp_pdf_path, "wb") as f: | |
# f.write(pdf_file.getvalue()) | |
# data_path = os.path.join(temp_dir.name, f"my_own_data_{unique_folder_name}_{os.path.splitext(pdf_file.name)[0]}") | |
# os.makedirs(data_path , exist_ok=True) | |
# img_save_path = os.path.join(temp_dir.name, f"extracted_images_{unique_folder_name}_{os.path.splitext(pdf_file.name)[0]}") | |
# os.makedirs(img_save_path , exist_ok=True) | |
# extracted_text = extract_text_from_pdf(temp_pdf_path) | |
# with open(os.path.join(data_path, "content.txt"), "w") as file: | |
# file.write(extracted_text) | |
# extract_images_from_pdf(temp_pdf_path, img_save_path) | |
# moved_count = move_images(img_save_path, data_path) | |
# remove_low_size_images(data_path) | |
# remove_duplicate_images(data_path) | |
# retriever_engine = initialize_qdrant(temp_dir.name , os.path.splitext(pdf_file.name)[0] , unique_folder_name) | |
# return temp_dir, retriever_engine | |
# def main(): | |
# st.title("PDF Vector Database Query Tool") | |
# st.markdown("This tool creates a vector database from a PDF and allows you to query it.") | |
# if "retriever_engine" not in st.session_state: | |
# st.session_state.retriever_engine = None | |
# if "vectordatabase" not in st.session_state: | |
# st.session_state.vectordatabase = None | |
# uploaded_file = st.file_uploader("Choose a PDF file", type="pdf") | |
# if uploaded_file is None: | |
# st.info("Please upload a PDF file.") | |
# else: | |
# st.info(f"Uploaded PDF: {uploaded_file.name}") | |
# if st.button("Process PDF"): | |
# with st.spinner("Processing PDF..."): | |
# temp_dir, st.session_state.retriever_engine = process_pdf(uploaded_file) | |
# st.success("PDF processed successfully!") | |
# if st.session_state.retriever_engine : | |
# query = st.text_input("Enter your question:") | |
# if st.button("Ask Question"): | |
# print("running") | |
# try: | |
# with st.spinner("Retrieving information..."): | |
# response, retrieved_image_path_list = retrieve_and_query(query, st.session_state.retriever_engine) | |
# print(retrieved_image_path_list) | |
# st.write("Retrieved Context:") | |
# for node in response.source_nodes: | |
# st.code(node.node.get_text()) | |
# st.write("\nRetrieved Images:") | |
# plot_images(retrieved_image_path_list) | |
# st.pyplot() | |
# st.write("\nFinal Answer:") | |
# st.code(response.response) | |
# except Exception as e: | |
# st.error(f"An error occurred: {e}") | |
# if __name__ == "__main__": | |
# main() | |
import streamlit as st | |
from PIL import Image | |
from pdf_processing import process_pdf | |
from retrieve_and_display import retrieve_and_query, plot_images | |
from dotenv import load_dotenv | |
load_dotenv() | |
def upload_file(): | |
if not st.session_state.filename_and_retriever_engine: | |
st.title("Upload File to chat with file") | |
else: | |
st.title(f"File {st.session_state.filename_and_retriever_engine[0]} loaded.") | |
st.info("Click on Chat in sidebar") | |
st.info("Upload another file if you want to chat with a different pdf") | |
uploaded_file = st.file_uploader("Choose a PDF file", type="pdf") | |
if uploaded_file is None: | |
if not st.session_state.filename_and_retriever_engine: | |
st.info("Please upload a PDF file.") | |
else: | |
st.info(f"Uploaded PDF: {uploaded_file.name}") | |
if st.button("Process PDF"): | |
with st.spinner("Processing PDF..."): | |
st.session_state.filename_and_retriever_engine = uploaded_file.name, process_pdf(uploaded_file) | |
st.success("PDF processed successfully!") | |
st.success("Click on Chat in sidebar") | |
def img_display(img_path_list) : | |
##################### new image display function ################################### | |
for one_img in img_path_list : | |
image = Image.open(one_img) | |
st.image(image) | |
def ask_question(): | |
if st.session_state.filename_and_retriever_engine : | |
st.title(f"Chat with {st.session_state.filename_and_retriever_engine[0]}") | |
if user_question := st.chat_input("Ask a question"): | |
with st.spinner("Retrieving information..."): | |
response, retrieved_image_path_list = retrieve_and_query(user_question, st.session_state.filename_and_retriever_engine[1]) | |
st.session_state.filename_and_retriever_engine[1].count('image_collection') | |
print(retrieved_image_path_list) | |
st.write("Retrieved Context:") | |
for node in response.source_nodes: | |
st.code(node.node.get_text()) | |
st.write("\nRetrieved Images:") | |
# plot_images(retrieved_image_path_list) | |
img_display(retrieved_image_path_list) | |
# st.pyplot() | |
st.write("\nFinal Answer:") | |
st.code(response.response) | |
else: | |
st.title("Upload File to chat with file") | |
def main(): | |
if "filename_and_retriever_engine" not in st.session_state: | |
st.session_state.filename_and_retriever_engine = None | |
page_names_to_funcs = { | |
"Upload File": upload_file, | |
"Chat": ask_question | |
} | |
demo_name = st.sidebar.selectbox("PDF Query Tool", page_names_to_funcs.keys()) | |
page_names_to_funcs[demo_name]() | |
if __name__ == "__main__": | |
# login_page() | |
main() | |