viboognesh commited on
Commit
0b03ede
·
verified ·
1 Parent(s): b092cba

Upload folder using huggingface_hub

Browse files
Files changed (2) hide show
  1. app.py +206 -0
  2. requirements.txt +15 -0
app.py ADDED
@@ -0,0 +1,206 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import os
3
+ from PyPDF2 import PdfReader
4
+ import pymupdf
5
+ import numpy as np
6
+ import cv2
7
+ import shutil
8
+ import imageio
9
+ from PIL import Image
10
+ import imagehash
11
+ import matplotlib.pyplot as plt
12
+ from llama_index.core.indices import MultiModalVectorStoreIndex
13
+ from llama_index.vector_stores.qdrant import QdrantVectorStore
14
+ from llama_index.core import SimpleDirectoryReader, StorageContext
15
+ import qdrant_client
16
+ from llama_index.core import PromptTemplate
17
+ from llama_index.core.query_engine import SimpleMultiModalQueryEngine
18
+ from llama_index.llms.openai import OpenAI
19
+ from llama_index.core import load_index_from_storage, get_response_synthesizer
20
+ import tempfile
21
+
22
+
23
+ def extract_text_from_pdf(pdf_path):
24
+ reader = PdfReader(pdf_path)
25
+ full_text = ''
26
+ for page in reader.pages:
27
+ text = page.extract_text()
28
+ full_text += text
29
+ return full_text
30
+
31
+ def extract_images_from_pdf(pdf_path, img_save_path):
32
+ doc = pymupdf.open(pdf_path)
33
+ for page in doc:
34
+ img_number = 0
35
+ for block in page.get_text("dict")["blocks"]:
36
+ if block['type'] == 1:
37
+ name = os.path.join(img_save_path, f"img{page.number}-{img_number}.{block['ext']}")
38
+ out = open(name, "wb")
39
+ out.write(block["image"])
40
+ out.close()
41
+ img_number += 1
42
+
43
+ def is_empty(img_path):
44
+ image = cv2.imread(img_path, 0)
45
+ std_dev = np.std(image)
46
+ return std_dev < 1
47
+
48
+ def move_images(source_folder, dest_folder):
49
+ image_files = [f for f in os.listdir(source_folder)
50
+ if f.lower().endswith(('.jpg', '.jpeg', '.png', '.gif'))]
51
+ os.makedirs(dest_folder, exist_ok=True)
52
+ moved_count = 0
53
+ for file in image_files:
54
+ src_path = os.path.join(source_folder, file)
55
+ if not is_empty(src_path):
56
+ shutil.move(src_path, os.path.join(dest_folder, file))
57
+ moved_count += 1
58
+ return moved_count
59
+
60
+ def remove_low_size_images(data_path):
61
+ images_list = os.listdir(data_path)
62
+ low_size_photo_list = []
63
+ for one_image in images_list:
64
+ image_path = os.path.join(data_path, one_image)
65
+ try:
66
+ pic = imageio.imread(image_path)
67
+ size = pic.size
68
+ if size < 100:
69
+ low_size_photo_list.append(one_image)
70
+ except:
71
+ pass
72
+ for one_image in low_size_photo_list[1:]:
73
+ os.remove(os.path.join(data_path, one_image))
74
+
75
+ def initialize_qdrant(temp_dir):
76
+ try :
77
+ client = qdrant_client.QdrantClient(path="qdrant_mm_db_pipeline")
78
+ except :
79
+ pass
80
+ if "vectordatabase" not in st.session_state or not st.session_state.vectordatabase:
81
+ text_store = QdrantVectorStore(client=client, collection_name="text_collection_pipeline")
82
+ image_store = QdrantVectorStore(client=client, collection_name="image_collection_pipeline")
83
+ storage_context = StorageContext.from_defaults(vector_store=text_store, image_store=image_store)
84
+ documents = SimpleDirectoryReader(os.path.join(temp_dir, "my_own_data")).load_data()
85
+ index = MultiModalVectorStoreIndex.from_documents(documents, storage_context=storage_context)
86
+ st.session_state.vectordatabase = index
87
+ else :
88
+ index = st.session_state.vectordatabase
89
+ retriever_engine = index.as_retriever(similarity_top_k=1, image_similarity_top_k=1)
90
+ return retriever_engine
91
+
92
+ def plot_images(image_paths):
93
+ images_shown = 0
94
+ plt.figure(figsize=(16, 9))
95
+ for img_path in image_paths:
96
+ if os.path.isfile(img_path):
97
+ image = Image.open(img_path)
98
+ plt.subplot(2, 3, images_shown + 1)
99
+ plt.imshow(image)
100
+ plt.xticks([])
101
+ plt.yticks([])
102
+ images_shown += 1
103
+ if images_shown >= 6:
104
+ break
105
+
106
+ def retrieve_and_query(query, retriever_engine):
107
+ retrieval_results = retriever_engine.retrieve(query)
108
+
109
+ qa_tmpl_str = (
110
+ "Context information is below.\n"
111
+ "---------------------\n"
112
+ "{context_str}\n"
113
+ "---------------------\n"
114
+ "Given the context information , "
115
+ "answer the query in detail.\n"
116
+ "Query: {query_str}\n"
117
+ "Answer: "
118
+ )
119
+ qa_tmpl = PromptTemplate(qa_tmpl_str)
120
+
121
+ llm = OpenAI(model="gpt-4o", temperature=0)
122
+ response_synthesizer = get_response_synthesizer(response_mode="refine", text_qa_template=qa_tmpl, llm=llm)
123
+
124
+ response = response_synthesizer.synthesize(query, nodes=retrieval_results)
125
+
126
+ retrieved_image_path_list = []
127
+ for node in retrieval_results:
128
+ if (node.metadata['file_type'] == 'image/jpeg') or (node.metadata['file_type'] == 'image/png'):
129
+ if node.score > 0.25:
130
+ retrieved_image_path_list.append(node.metadata['file_path'])
131
+
132
+ return response, retrieved_image_path_list
133
+
134
+ def process_pdf(pdf_file):
135
+ # import pdb; pdb.set_trace()
136
+ temp_dir = tempfile.TemporaryDirectory()
137
+ temp_pdf_path = os.path.join(temp_dir.name, pdf_file.name)
138
+ with open(temp_pdf_path, "wb") as f:
139
+ f.write(pdf_file.getvalue())
140
+
141
+ data_path = os.path.join(temp_dir.name, "my_own_data")
142
+ os.makedirs(data_path , exist_ok=True)
143
+ img_save_path = os.path.join(temp_dir.name, "extracted_images")
144
+ os.makedirs(img_save_path , exist_ok=True)
145
+
146
+ extracted_text = extract_text_from_pdf(temp_pdf_path)
147
+ with open(os.path.join(data_path, "content.txt"), "w") as file:
148
+ file.write(extracted_text)
149
+
150
+ extract_images_from_pdf(temp_pdf_path, img_save_path)
151
+ moved_count = move_images(img_save_path, data_path)
152
+ remove_low_size_images(data_path)
153
+
154
+ retriever_engine = initialize_qdrant(temp_dir.name)
155
+
156
+ return temp_dir, retriever_engine
157
+
158
+ def main():
159
+ st.title("PDF Vector Database Query Tool")
160
+ st.markdown("This tool creates a vector database from a PDF and allows you to query it.")
161
+
162
+ if "retriever_engine" not in st.session_state:
163
+ st.session_state.retriever_engine = None
164
+ if "vectordatabase" not in st.session_state:
165
+ st.session_state.vectordatabase = None
166
+
167
+ uploaded_file = st.file_uploader("Choose a PDF file", type="pdf")
168
+ if uploaded_file is None:
169
+ st.info("Please upload a PDF file.")
170
+ else:
171
+ st.info(f"Uploaded PDF: {uploaded_file.name}")
172
+ if st.button("Process PDF"):
173
+ with st.spinner("Processing PDF..."):
174
+ temp_dir, st.session_state.retriever_engine = process_pdf(uploaded_file)
175
+
176
+ st.success("PDF processed successfully!")
177
+
178
+
179
+ query = st.text_input("Enter your question:")
180
+
181
+
182
+ if st.button("Ask Question"):
183
+ print("running")
184
+ try:
185
+ import pdb; pdb.set_trace()
186
+
187
+ with st.spinner("Retrieving information..."):
188
+ import pdb; pdb.set_trace()
189
+ response, retrieved_image_path_list = retrieve_and_query(query, st.session_state.retriever_engine)
190
+
191
+ st.write("Retrieved Context:")
192
+ for node in response.source_nodes:
193
+ st.code(node.node.get_text())
194
+
195
+ st.write("\nRetrieved Images:")
196
+ plot_images(retrieved_image_path_list)
197
+ st.pyplot()
198
+
199
+ st.write("\nFinal Answer:")
200
+ st.code(response.response)
201
+
202
+ except Exception as e:
203
+ st.error(f"An error occurred: {e}")
204
+
205
+ if __name__ == "__main__":
206
+ main()
requirements.txt ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ PyPDF2==3.0.1
2
+ PyMuPDF==1.24.9
3
+ numpy==1.26.4
4
+ opencv-python==4.10.0.84
5
+ matplotlib==3.9.2
6
+ llama-index==0.11.2
7
+ llama-index-vector-stores-qdrant==0.3.0
8
+ ipython==8.26.0
9
+ llama-index-embeddings-clip==0.2.0
10
+ imageio==2.35.1
11
+ pillow==10.4.0
12
+ imagehash
13
+ llama-index-embeddings-clip
14
+ git+https://github.com/openai/CLIP.git
15
+ dotenv