DoctorSlimm commited on
Commit
b655778
·
1 Parent(s): d9ea562
Files changed (1) hide show
  1. kaushiks_criteria.py +22 -9
kaushiks_criteria.py CHANGED
@@ -28,27 +28,40 @@ year={2020}
28
 
29
  # TODO: Add description of the module here
30
  _DESCRIPTION = """\
31
- This new module is designed to solve this great ML task and is crafted with a lot of care.
 
 
 
 
 
 
 
 
 
 
32
  """
33
 
34
 
35
  # TODO: Add description of the arguments of the module here
36
  _KWARGS_DESCRIPTION = """
37
- Calculates how good are predictions given some references, using certain scores
38
  Args:
39
- predictions: list of predictions to score. Each predictions
40
  should be a string with tokens separated by spaces.
41
  references: list of reference for each prediction. Each
42
  reference should be a string with tokens separated by spaces.
 
43
  Returns:
44
- accuracy: description of the first score,
45
- another_score: description of the second score,
46
  Examples:
47
  Examples should be written in doctest format, and should illustrate how
48
  to use the function.
49
 
50
- >>> my_new_module = evaluate.load("my_new_module")
51
- >>> results = my_new_module.compute(references=[0, 1], predictions=[0, 1])
 
 
 
52
  >>> print(results)
53
  {'accuracy': 1.0}
54
  """
@@ -71,8 +84,8 @@ class kaushiks_criteria(evaluate.Metric):
71
  inputs_description=_KWARGS_DESCRIPTION,
72
  # This defines the format of each prediction and reference
73
  features=datasets.Features({
74
- 'predictions': datasets.Value('int64'),
75
- 'references': datasets.Value('int64'),
76
  }),
77
  # Homepage of the module for documentation
78
  homepage="http://module.homepage",
 
28
 
29
  # TODO: Add description of the module here
30
  _DESCRIPTION = """\
31
+ Evaluate structured output formatting for generated text.
32
+ - considers header / column / tag / key names
33
+ - DOES NOT consider the cell / row values
34
+
35
+ Formats:
36
+ - [] Custom
37
+ - [] Markdown tables
38
+ - [] HTML tables
39
+ - [] JSON
40
+ - [] XML
41
+ - [] CSV / TSV
42
  """
43
 
44
 
45
  # TODO: Add description of the arguments of the module here
46
  _KWARGS_DESCRIPTION = """
47
+ Calculates how well the `structure` of the predictions matches the `structure` of the references.
48
  Args:
49
+ predictions: list of strings to score. Each predictions
50
  should be a string with tokens separated by spaces.
51
  references: list of reference for each prediction. Each
52
  reference should be a string with tokens separated by spaces.
53
+ invariance: bool, whether to consider the order of the columns / tags / keys.
54
  Returns:
55
+ kaushiks_criteria: kaushiks_criteria score.
 
56
  Examples:
57
  Examples should be written in doctest format, and should illustrate how
58
  to use the function.
59
 
60
+ >>> my_new_module = evaluate.load("DoctorSlimm/kaushiks_criteria")
61
+ >>> results = my_new_module.compute(
62
+ references=['<table><tr><td>1</td><td>2</td></tr></table>'],
63
+ predictions=['<table><tr><td>1</td><td>2</td></tr></table>']
64
+ )
65
  >>> print(results)
66
  {'accuracy': 1.0}
67
  """
 
84
  inputs_description=_KWARGS_DESCRIPTION,
85
  # This defines the format of each prediction and reference
86
  features=datasets.Features({
87
+ 'predictions': datasets.Value('string'),
88
+ 'references': datasets.Value('string'),
89
  }),
90
  # Homepage of the module for documentation
91
  homepage="http://module.homepage",