Dragunflie-420's picture
Update app.py
2d89c62 verified
#==================================================================================
# https://huggingface.co/spaces/asigalov61/Giant-Music-Transformer
#==================================================================================
print('=' * 70)
print('Giant Music Transformer Gradio App')
print('=' * 70)
print('Loading core Giant Music Transformer modules...')
import os
import time as reqtime
import datetime
from pytz import timezone
print('=' * 70)
print('Loading main Giant Music Transformer modules...')
os.environ['USE_FLASH_ATTENTION'] = '1'
import torch
torch.set_float32_matmul_precision('high')
torch.backends.cuda.matmul.allow_tf32 = True # allow tf32 on matmul
torch.backends.cudnn.allow_tf32 = True # allow tf32 on cudnn
torch.backends.cuda.enable_mem_efficient_sdp(True)
torch.backends.cuda.enable_math_sdp(True)
torch.backends.cuda.enable_flash_sdp(True)
torch.backends.cuda.enable_cudnn_sdp(True)
import TMIDIX
from midi_to_colab_audio import midi_to_colab_audio
from x_transformer_1_23_2 import *
import random
print('=' * 70)
print('Loading aux Giant Music Transformer modules...')
import matplotlib.pyplot as plt
import gradio as gr
import spaces
print('=' * 70)
print('PyTorch version:', torch.__version__)
print('=' * 70)
print('Done!')
print('Enjoy! :)')
print('=' * 70)
#==================================================================================
MODEL_CHECKPOINT = 'Giant_Music_Transformer_Medium_Trained_Model_25603_steps_0.3799_loss_0.8934_acc.pth'
SOUDFONT_PATH = 'SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2'
NUM_OUT_BATCHES = 8
PREVIEW_LENGTH = 120 # in tokens
#==================================================================================
print('=' * 70)
print('Instantiating model...')
device_type = 'cuda'
dtype = 'bfloat16'
ptdtype = {'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype]
ctx = torch.amp.autocast(device_type=device_type, dtype=ptdtype)
SEQ_LEN = 8192
PAD_IDX = 19463
model = TransformerWrapper(
num_tokens = PAD_IDX+1,
max_seq_len = SEQ_LEN,
attn_layers = Decoder(dim = 2048,
depth = 8,
heads = 32,
rotary_pos_emb = True,
attn_flash = True
)
)
model = AutoregressiveWrapper(model, ignore_index=PAD_IDX, pad_value=PAD_IDX)
print('=' * 70)
print('Loading model checkpoint...')
model.load_state_dict(torch.load(MODEL_CHECKPOINT, map_location='cpu'))
print('=' * 70)
print('Done!')
print('=' * 70)
print('Model will use', dtype, 'precision...')
print('=' * 70)
#==================================================================================
def load_midi(input_midi):
raw_score = TMIDIX.midi2single_track_ms_score(input_midi.name)
escore_notes = TMIDIX.advanced_score_processor(raw_score, return_enhanced_score_notes=True)
escore_notes = TMIDIX.augment_enhanced_score_notes(escore_notes[0], timings_divider=16)
instruments_list = list(set([y[6] for y in escore_notes]))
#=======================================================
# FINAL PROCESSING
#=======================================================
melody_chords = []
# Break between compositions / Intro seq
if 128 in instruments_list:
drums_present = 19331 # Yes
else:
drums_present = 19330 # No
pat = escore_notes[0][6]
melody_chords.extend([19461, drums_present, 19332+pat]) # Intro seq
#=======================================================
# MAIN PROCESSING CYCLE
#=======================================================
pe = escore_notes[0]
for e in escore_notes:
#=======================================================
# Timings...
# Cliping all values...
delta_time = max(0, min(255, e[1]-pe[1]))
# Durations and channels
dur = max(0, min(255, e[2]))
cha = max(0, min(15, e[3]))
# Patches
if cha == 9: # Drums patch will be == 128
pat = 128
else:
pat = e[6]
# Pitches
ptc = max(1, min(127, e[4]))
# Velocities
# Calculating octo-velocity
vel = max(8, min(127, e[5]))
velocity = round(vel / 15)-1
#=======================================================
# FINAL NOTE SEQ
#=======================================================
# Writing final note asynchronously
dur_vel = (8 * dur) + velocity
pat_ptc = (129 * pat) + ptc
melody_chords.extend([delta_time, dur_vel+256, pat_ptc+2304])
pe = e
return melody_chords
#==================================================================================
def save_midi(tokens, batch_number=None):
song = tokens
song_f = []
time = 0
dur = 0
vel = 90
pitch = 0
channel = 0
patches = [-1] * 16
patches[9] = 9
channels = [0] * 16
channels[9] = 1
for ss in song:
if 0 <= ss < 256:
time += ss * 16
if 256 <= ss < 2304:
dur = ((ss-256) // 8) * 16
vel = (((ss-256) % 8)+1) * 15
if 2304 <= ss < 18945:
patch = (ss-2304) // 129
if patch < 128:
if patch not in patches:
if 0 in channels:
cha = channels.index(0)
channels[cha] = 1
else:
cha = 15
patches[cha] = patch
channel = patches.index(patch)
else:
channel = patches.index(patch)
if patch == 128:
channel = 9
pitch = (ss-2304) % 129
song_f.append(['note', time, dur, channel, pitch, vel, patch ])
patches = [0 if x==-1 else x for x in patches]
if batch_number == None:
fname = 'Giant-Music-Transformer-Music-Composition'
else:
fname = 'Giant-Music-Transformer-Music-Composition_'+str(batch_number)
data = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(song_f,
output_signature = 'Giant Music Transformer',
output_file_name = fname,
track_name='Project Los Angeles',
list_of_MIDI_patches=patches,
verbose=True
)
return song_f
#==================================================================================
@spaces.GPU
def generate_music(prime,
num_gen_tokens,
num_mem_tokens,
num_gen_batches,
gen_outro,
gen_drums,
model_temperature,
model_sampling_top_p
):
if not prime:
inputs = [19461]
else:
inputs = prime[-num_mem_tokens:]
if gen_outro == 'Force':
inputs.extend([18945])
if gen_drums:
drums = [36, 38]
drum_pitch = random.choice(drums)
inputs.extend([0, ((8*8)+6)+256, ((128*129)+drum_pitch)+2304])
# torch.cuda.empty_cache()
model.cuda()
model.eval()
print('Generating...')
inp = [inputs] * num_gen_batches
inp = torch.LongTensor(inp).cuda()
with ctx:
with torch.inference_mode():
out = model.generate(inp,
num_gen_tokens,
filter_logits_fn=top_p,
filter_kwargs={'thres': model_sampling_top_p},
temperature=model_temperature,
return_prime=True,
verbose=True)
output = out.tolist()
output_batches = []
if gen_outro == 'Disable':
for o in output:
output_batches.append([t for t in o if not 18944 < t < 19330])
else:
output_batches = output
print('Done!')
print('=' * 70)
return output_batches
#==================================================================================
def generate_callback(input_midi,
num_prime_tokens,
num_gen_tokens,
num_mem_tokens,
gen_outro,
gen_drums,
model_temperature,
model_sampling_top_p,
final_composition,
generated_batches,
block_lines
):
generated_batches = []
if not final_composition and input_midi is not None:
final_composition = load_midi(input_midi)[:num_prime_tokens]
midi_score = save_midi(final_composition)
block_lines.append(midi_score[-1][1] / 1000)
batched_gen_tokens = generate_music(final_composition,
num_gen_tokens,
num_mem_tokens,
NUM_OUT_BATCHES,
gen_outro,
gen_drums,
model_temperature,
model_sampling_top_p
)
outputs = []
for i in range(len(batched_gen_tokens)):
tokens = batched_gen_tokens[i]
# Preview
tokens_preview = final_composition[-PREVIEW_LENGTH:]
# Save MIDI to a temporary file
midi_score = save_midi(tokens_preview + tokens, i)
# MIDI plot
if len(final_composition) > PREVIEW_LENGTH:
midi_plot = TMIDIX.plot_ms_SONG(midi_score,
plot_title='Batch # ' + str(i),
preview_length_in_notes=int(PREVIEW_LENGTH / 3),
return_plt=True
)
else:
midi_plot = TMIDIX.plot_ms_SONG(midi_score,
plot_title='Batch # ' + str(i),
return_plt=True
)
# File name
fname = 'Giant-Music-Transformer-Music-Composition_'+str(i)
# Save audio to a temporary file
midi_audio = midi_to_colab_audio(fname + '.mid',
soundfont_path=SOUDFONT_PATH,
sample_rate=16000,
output_for_gradio=True
)
outputs.append([(16000, midi_audio), midi_plot, tokens])
return outputs, final_composition, generated_batches, block_lines
#==================================================================================
def generate_callback_wrapper(input_midi,
num_prime_tokens,
num_gen_tokens,
num_mem_tokens,
gen_outro,
gen_drums,
model_temperature,
model_sampling_top_p,
final_composition,
generated_batches,
block_lines
):
print('=' * 70)
print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
start_time = reqtime.time()
print('=' * 70)
if input_midi is not None:
fn = os.path.basename(input_midi.name)
fn1 = fn.split('.')[0]
print('Input file name:', fn)
print('Num prime tokens:', num_prime_tokens)
print('Num gen tokens:', num_gen_tokens)
print('Num mem tokens:', num_mem_tokens)
print('Gen drums:', gen_drums)
print('Gen outro:', gen_outro)
print('Model temp:', model_temperature)
print('Model top_p:', model_sampling_top_p)
print('=' * 70)
result = generate_callback(input_midi,
num_prime_tokens,
num_gen_tokens,
num_mem_tokens,
gen_outro,
gen_drums,
model_temperature,
model_sampling_top_p,
final_composition,
generated_batches,
block_lines
)
generated_batches = [sublist[-1] for sublist in result[0]]
print('=' * 70)
print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
print('=' * 70)
print('Req execution time:', (reqtime.time() - start_time), 'sec')
print('*' * 70)
return tuple([result[1], generated_batches, result[3]] + [item for sublist in result[0] for item in sublist[:-1]])
#==================================================================================
def add_batch(batch_number, final_composition, generated_batches, block_lines):
if generated_batches:
final_composition.extend(generated_batches[batch_number])
# Save MIDI to a temporary file
midi_score = save_midi(final_composition)
block_lines.append(midi_score[-1][1] / 1000)
# MIDI plot
midi_plot = TMIDIX.plot_ms_SONG(midi_score,
plot_title='Giant Music Transformer Composition',
block_lines_times_list=block_lines[:-1],
return_plt=True)
# File name
fname = 'Giant-Music-Transformer-Music-Composition'
# Save audio to a temporary file
midi_audio = midi_to_colab_audio(fname + '.mid',
soundfont_path=SOUDFONT_PATH,
sample_rate=16000,
output_for_gradio=True
)
print('Added batch #', batch_number)
print('=' * 70)
return (16000, midi_audio), midi_plot, fname+'.mid', final_composition, generated_batches, block_lines
else:
return None, None, None, [], [], []
#==================================================================================
def remove_batch(batch_number, num_tokens, final_composition, generated_batches, block_lines):
if final_composition:
if len(final_composition) > num_tokens:
final_composition = final_composition[:-num_tokens]
block_lines.pop()
# Save MIDI to a temporary file
midi_score = save_midi(final_composition)
# MIDI plot
midi_plot = TMIDIX.plot_ms_SONG(midi_score,
plot_title='Giant Music Transformer Composition',
block_lines_times_list=block_lines[:-1],
return_plt=True)
# File name
fname = 'Giant-Music-Transformer-Music-Composition'
# Save audio to a temporary file
midi_audio = midi_to_colab_audio(fname + '.mid',
soundfont_path=SOUDFONT_PATH,
sample_rate=16000,
output_for_gradio=True
)
print('Removed batch #', batch_number)
print('=' * 70)
return (16000, midi_audio), midi_plot, fname+'.mid', final_composition, generated_batches, block_lines
else:
return None, None, None, [], [], []
#==================================================================================
def reset(final_composition=[], generated_batches=[], block_lines=[]):
final_composition = []
generated_batches = []
block_lines = []
return final_composition, generated_batches, block_lines
#==================================================================================
def reset_demo(final_composition=[], generated_batches=[], block_lines=[]):
final_composition = []
generated_batches = []
block_lines = []
#==================================================================================
PDT = timezone('US/Pacific')
print('=' * 70)
print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
print('=' * 70)
with gr.Blocks() as demo:
demo.load(reset_demo)
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Giant Music Transformer</h1>")
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Fast multi-instrumental music transformer with true full MIDI instruments range, efficient encoding, octo-velocity and outro tokens</h1>")
gr.HTML("""
Check out <a href="https://github.com/asigalov61/Giant-Music-Transformer">Giant Music Transformer</a> on GitHub!
<p>
<a href="https://colab.research.google.com/github/asigalov61/Giant-Music-Transformer/blob/main/Giant_Music_Transformer.ipynb">
<img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab">
</a> or
<a href="https://huggingface.co/spaces/asigalov61/Giant-Music-Transformer?duplicate=true">
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-md.svg" alt="Duplicate in Hugging Face">
</a>
</p>
for faster execution and endless generation!
""")
#==================================================================================
final_composition = gr.State([])
generated_batches = gr.State([])
block_lines = gr.State([])
#==================================================================================
gr.Markdown("## Upload seed MIDI or click 'Generate' button for random output")
input_midi = gr.File(label="Input MIDI", file_types=[".midi", ".mid", ".kar"])
input_midi.upload(reset, [final_composition, generated_batches, block_lines],
[final_composition, generated_batches, block_lines])
gr.Markdown("## Generate")
num_prime_tokens = gr.Slider(15, 6990, value=600, step=3, label="Number of prime tokens")
num_gen_tokens = gr.Slider(15, 1200, value=600, step=3, label="Number of tokens to generate")
num_mem_tokens = gr.Slider(15, 6990, value=6990, step=3, label="Number of memory tokens")
gen_drums = gr.Checkbox(value=False, label="Introduce drums")
gen_outro = gr.Radio(["Auto", "Disable", "Force"], value="Auto", label="Outro options")
model_temperature = gr.Slider(0.1, 1, value=0.9, step=0.01, label="Model temperature")
model_sampling_top_p = gr.Slider(0.1, 1, value=0.96, step=0.01, label="Model sampling top p value")
generate_btn = gr.Button("Generate", variant="primary")
gr.Markdown("## Select batch")
outputs = [final_composition, generated_batches, block_lines]
for i in range(NUM_OUT_BATCHES):
with gr.Tab(f"Batch # {i}") as tab:
audio_output = gr.Audio(label=f"Batch # {i} MIDI Audio", format="mp3", elem_id="midi_audio")
plot_output = gr.Plot(label=f"Batch # {i} MIDI Plot")
outputs.extend([audio_output, plot_output])
generate_btn.click(generate_callback_wrapper,
[input_midi,
num_prime_tokens,
num_gen_tokens,
num_mem_tokens,
gen_outro,
gen_drums,
model_temperature,
model_sampling_top_p,
final_composition,
generated_batches,
block_lines
],
outputs
)
gr.Markdown("## Add/Remove batch")
batch_number = gr.Slider(0, NUM_OUT_BATCHES-1, value=0, step=1, label="Batch number to add/remove")
add_btn = gr.Button("Add batch", variant="primary")
remove_btn = gr.Button("Remove batch", variant="stop")
final_audio_output = gr.Audio(label="Final MIDI audio", format="mp3", elem_id="midi_audio")
final_plot_output = gr.Plot(label="Final MIDI plot")
final_file_output = gr.File(label="Final MIDI file")
add_btn.click(add_batch, [batch_number, final_composition, generated_batches, block_lines],
[final_audio_output, final_plot_output, final_file_output, final_composition, generated_batches, block_lines])
remove_btn.click(remove_batch, [batch_number, num_gen_tokens, final_composition, generated_batches, block_lines],
[final_audio_output, final_plot_output, final_file_output, final_composition, generated_batches, block_lines])
demo.unload(reset_demo)
#==================================================================================
demo.launch()
#==================================================================================