Spaces:
Running
on
Zero
Running
on
Zero
asigalov61
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -57,6 +57,46 @@ NUM_OUT_BATCHES = 8
|
|
57 |
|
58 |
#==================================================================================
|
59 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
def load_midi(input_midi):
|
61 |
|
62 |
raw_score = TMIDIX.midi2single_track_ms_score(input_midi.name)
|
@@ -219,52 +259,8 @@ def generate_music(prime,
|
|
219 |
model_sampling_top_p
|
220 |
):
|
221 |
|
222 |
-
|
223 |
-
#==============================================================================
|
224 |
-
|
225 |
-
print('=' * 70)
|
226 |
-
print('Instantiating model...')
|
227 |
-
|
228 |
-
device_type = 'cuda'
|
229 |
-
dtype = 'bfloat16'
|
230 |
-
|
231 |
-
ptdtype = {'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype]
|
232 |
-
ctx = torch.amp.autocast(device_type=device_type, dtype=ptdtype)
|
233 |
-
|
234 |
-
SEQ_LEN = 8192
|
235 |
-
PAD_IDX = 19463
|
236 |
-
|
237 |
-
model = TransformerWrapper(
|
238 |
-
num_tokens = PAD_IDX+1,
|
239 |
-
max_seq_len = SEQ_LEN,
|
240 |
-
attn_layers = Decoder(dim = 2048,
|
241 |
-
depth = 8,
|
242 |
-
heads = 32,
|
243 |
-
rotary_pos_emb = True,
|
244 |
-
attn_flash = True
|
245 |
-
)
|
246 |
-
)
|
247 |
-
|
248 |
-
model = AutoregressiveWrapper(model, ignore_index=PAD_IDX, pad_value=PAD_IDX)
|
249 |
-
|
250 |
-
print('=' * 70)
|
251 |
-
print('Loading model checkpoint...')
|
252 |
-
|
253 |
-
model_path = 'Giant_Music_Transformer_Medium_Trained_Model_10446_steps_0.7202_loss_0.8233_acc.pth'
|
254 |
-
|
255 |
-
model.load_state_dict(torch.load(model_path))
|
256 |
-
|
257 |
-
print('=' * 70)
|
258 |
-
|
259 |
model.cuda()
|
260 |
model.eval()
|
261 |
-
|
262 |
-
print('Done!')
|
263 |
-
print('=' * 70)
|
264 |
-
print('Model will use', dtype, 'precision...')
|
265 |
-
print('=' * 70)
|
266 |
-
|
267 |
-
#==============================================================================
|
268 |
|
269 |
print('Generating...')
|
270 |
|
|
|
57 |
|
58 |
#==================================================================================
|
59 |
|
60 |
+
print('=' * 70)
|
61 |
+
print('Instantiating model...')
|
62 |
+
|
63 |
+
device_type = 'cuda'
|
64 |
+
dtype = 'bfloat16'
|
65 |
+
|
66 |
+
ptdtype = {'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype]
|
67 |
+
ctx = torch.amp.autocast(device_type=device_type, dtype=ptdtype)
|
68 |
+
|
69 |
+
SEQ_LEN = 8192
|
70 |
+
PAD_IDX = 19463
|
71 |
+
|
72 |
+
model = TransformerWrapper(
|
73 |
+
num_tokens = PAD_IDX+1,
|
74 |
+
max_seq_len = SEQ_LEN,
|
75 |
+
attn_layers = Decoder(dim = 2048,
|
76 |
+
depth = 8,
|
77 |
+
heads = 32,
|
78 |
+
rotary_pos_emb = True,
|
79 |
+
attn_flash = True
|
80 |
+
)
|
81 |
+
)
|
82 |
+
|
83 |
+
model = AutoregressiveWrapper(model, ignore_index=PAD_IDX, pad_value=PAD_IDX)
|
84 |
+
|
85 |
+
print('=' * 70)
|
86 |
+
print('Loading model checkpoint...')
|
87 |
+
|
88 |
+
model_path = 'Giant_Music_Transformer_Medium_Trained_Model_10446_steps_0.7202_loss_0.8233_acc.pth'
|
89 |
+
|
90 |
+
model.load_state_dict(torch.load(model_path, map_location='cpu'))
|
91 |
+
|
92 |
+
print('=' * 70)
|
93 |
+
print('Done!')
|
94 |
+
print('=' * 70)
|
95 |
+
print('Model will use', dtype, 'precision...')
|
96 |
+
print('=' * 70)
|
97 |
+
|
98 |
+
#==================================================================================
|
99 |
+
|
100 |
def load_midi(input_midi):
|
101 |
|
102 |
raw_score = TMIDIX.midi2single_track_ms_score(input_midi.name)
|
|
|
259 |
model_sampling_top_p
|
260 |
):
|
261 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
262 |
model.cuda()
|
263 |
model.eval()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
264 |
|
265 |
print('Generating...')
|
266 |
|