File size: 1,754 Bytes
26555ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9591bf8
 
26555ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import os
import torch
import argparse
import torchvision

from pipelines.pipeline_videogen import VideoGenPipeline

from download import find_model
from diffusers.schedulers import DDIMScheduler, DDPMScheduler, PNDMScheduler, EulerDiscreteScheduler
from diffusers.models import AutoencoderKL
from transformers import CLIPTokenizer, CLIPTextModel, CLIPTextModelWithProjection
from omegaconf import OmegaConf

import os, sys
sys.path.append(os.path.split(sys.path[0])[0])
from models import get_models
import imageio

config_path = "./base/configs/sample.yaml"
args = OmegaConf.load("./base/configs/sample.yaml")

device = "cuda" if torch.cuda.is_available() else "cpu"

def model_t2v_fun(args):
	sd_path = args.pretrained_path + "/stable-diffusion-v1-4"
	unet = get_models(args, sd_path).to(device, dtype=torch.float16)
	# state_dict = find_model(args.pretrained_path + "/lavie_base.pt")
	state_dict = find_model("/mnt/petrelfs/share_data/wangyaohui/lavie/pretrained_models/lavie_base.pt")
	unet.load_state_dict(state_dict)
	
	vae = AutoencoderKL.from_pretrained(sd_path, subfolder="vae", torch_dtype=torch.float16).to(device)
	tokenizer_one = CLIPTokenizer.from_pretrained(sd_path, subfolder="tokenizer")
	text_encoder_one = CLIPTextModel.from_pretrained(sd_path, subfolder="text_encoder", torch_dtype=torch.float16).to(device) # huge
	unet.eval()
	vae.eval()
	text_encoder_one.eval()
	scheduler = DDIMScheduler.from_pretrained(sd_path, subfolder="scheduler", beta_start=args.beta_start, beta_end=args.beta_end, beta_schedule=args.beta_schedule)
	return VideoGenPipeline(vae=vae, text_encoder=text_encoder_one, tokenizer=tokenizer_one, scheduler=scheduler, unet=unet)

def setup_seed(seed):
	torch.manual_seed(seed)
	torch.cuda.manual_seed_all(seed)